Desarrollo de tecnología satelital: la experiencia del CICESE

CENTRO DE INVESTIGACIÓN CIENTÍFICA Y DE EDUCACIÓN SUPERIOR DE ENSENADA, BAJA CALIFORNIA

Boletín informativo

No. 8/2017

 En 4 décadas, sus grupos de trabajo han desarrollado fortalezas en el uso de tecnología espacial

Ensenada, Baja California, México, 3 de marzo de 2017. La investigación y desarrollo de tecnología espacial en el CICESE es quizá una de las historias académicas menos conocidas. Abarca va 40 años (empezó en 1976, apenas tres años después de que se creó este centro), por lo que está ligada no solamente a la conformación del actual Departamento de Electrónica y Telecomunicaciones, sino a la consolidación de grupos de investigación pioneros en el uso de ciencia y tecnología espacial aquí y en México, y que hoy la siguen utilizando de manera cotidiana.

El Dr. Roberto Conte Galván,

investigador del Departamento de Electrónica y Telecomunicaciones, dio un repaso a lo que ha sido el Desarrollo de Tecnología Espacial en el CICESE, en un seminario que abarcó estas cuatro décadas.

En los años 70 la telefonía en nuestro país tenía serias limitaciones, sobre todo en comunidades rurales. En vez de instalar postes y cablear sierras y llanuras de la vasta geografía mexicana para llevar este servicio a los más alejados puntos del país, la SCT vislumbró la posibilidad de hacerlo utilizando satélites.

Roberto Conte establece que para elaborar los estudios básicos de lo que sería el Plan Nacional de Telefonía Rural, esta secretaría contrató al CICESE, que en 1976 había establecido colaboración en materia de telefonía con la Universidad de Stanford, California, protocolizando así un proyecto extraordinario.

Puede decirse que este proyecto sirvió de base para que México tomara la determinación de contar con un sistema de satélites propios para proveer servicios de telefonía, datos y señales de televisión. Se trata de los satélites Morelos I y Morelos II, que fueron adquiridos a la empresa Hughes Space and Communications Company, y lanzados en 1982.

Sólo que en este contrato no se negociaron aspectos sobre transferencia o generación de conocimiento y tecnología hacia instituciones mexicanas, según explicó el Dr. Conte.

En el CICESE se realizaron en los años 80 y 90 varios proyectos que permitieron desarrollar diversas tecnologías satelitales. El Programa de Telefonía Rural por Satélite concluyó en 1986; en 1984 empezó el de Oceanografía por Satélite, que se mantiene hasta la fecha. Otros proyectos fueron Diseño y Aplicaciones de Redes VSAT (1988-1996); Proyecto de Satélites Solidaridad (1990-1994), y Comunicaciones Móviles en Banda L (1991-1996).

El primer satélite "Made in Mexico"

En 1992, casi a la par de la adquisición del sistema de satélites Solidaridad, se desarrolló el proyecto del microsatélite SATEX, el primero hecho 100 por ciento en México por un consorcio en el que participaban el CICESE, el Centro de Investigación y Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional (IPN), el Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), el Instituto de Ingeniería de la UNAM y la ESIME Zacatenco y Ticoman del IPN, así como la Benemérita Universidad Autónoma de Puebla (BUAP).

Se trataba de un cubo de 50 centímetros por lado y 50 kg de peso, que tendría una orbita cuasi polar a 780 km de altura (la de un satélite de órbita baja) y un periodo orbital de 100 minutos; es decir, le daría una vuelta a la Tierra cada 100 minutos.

El CICESE tuvo a su cargo construir la estación terrena, los subsistemas de telemetría y comando, y la carga útil, que consistía en un novedoso sistema de comunicaciones ópticas nunca antes probado en estos aparatos. De hecho, apenas en 2014 un grupo japonés logró hacer este tipo de enlace entre un satélite y una estación terrena, similar al propuesto para el SATEX 20 años antes por los doctores Javier Mendieta y Arturo Arvizu en este centro de investigación.

El proyecto SATEX concluyó en 1998, y aunque se desarrollaron varios módulos de manera independiente por las instituciones participantes, el proyecto nunca fue concluido en su totalidad.

Con este antecedente, el CICESE comenzó a desarrollar tecnología y aplicaciones espaciales propias. Entre los proyectos aprobados a lo largo de estos años destacan: Análisis de Negocios por Satélite: Telefonía Rural (1996-2000); Internet, Telefonía y VoIP por Satélite (2001-2006); Arreglos de Antenas en Enlaces Satelitales (2003-2008); QoS en Telemedicina y Epidemiología por Satélite (2007-2015); Proyectos de Nano-Satélites tipo CubeSat (2011-2015), así como Tecnología de Cargas Útiles para Satélites Pequeños (2011-2015).

La cartera de proyectos en los que actualmente trabajan investigadores, técnicos y estudiantes de posgrado de este centro incluye varios estudios. Uno es el desarrollo del SATEX II, un microsatélite experimental de 50 a 100 kg en el que participarán otras universidades y centros de investigación mexicanos, cuyo patrocinio está por definirse.

Con el proyecto Tele-epidemiología por Satélite, patrocinado por el CONACYT, se busca crear un modelo de detección para prevenir epidemias de dengue, malaria y chagas en México, con percepción remota por satélite.

Se trabaja en el diseño y construcción de un nanosatélite 3U CubeSat con sensor de video propietario en el espectro visible, para la Agencia Espacial Mexicana y la Secretaría de la Defensa Nacional.

En cuanto a desarrollo de tecnología y carga útil espacial, con financiamiento interno se diseñan y prueban cámaras a bordo en los espectros visible y multiespectral, así como un sistema de identificación y seguimiento de estrellas.

También con patrocinio del CONACYT se definió una guía regulatoria con procedimientos técnicos y legales para el lanzamiento de satélites pequeños, que fue entregada a la Agencia Espacial Mexicana.

En perspectiva, Roberto Conte consideró que a lo largo de 40 años todas las áreas académicas del CICESE se han beneficiado con el uso de la ciencia y tecnología espacial, pues los estudios que se han hecho aquí abarcan diversos aspectos de la oceanografía física, como el uso de imágenes de percepción remota de costas, mareas y corrientes oceánicas, temperatura del mar, velocidad, altura y dirección del oleaje, seguimiento de tormentas, huracanes y prevención de tsunamis, así como efectos en el clima, el cambio climático y estudios atmosféricos.

También incluyen investigaciones en biología marina, pesquerías y producción marina; en procesos ecológicos; en estudios de la corteza terrestre continental y sub-oceánica, monitoreo sísmico, producción de energía geotérmica, derrames y accidentes de hidrocarburos, así como distribución de contaminantes por corrientes superficiales y submarinas, entre muchos otros estudios.

######

Para mayor información:

Norma Herrera, Jefe del Departamento de Comunicación

Tel: (646) 175 05 31

Cel: (646) 117 16 27

nherrera@cicese.mx (mailto:nherrera@cicese.mx)