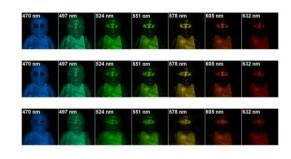


Your source for the latest research news

Algorithm makes hyperspectral imaging faster

Date: February 18, 2016


Source: North Carolina State University

Summary: Researchers have developed an algorithm that can quickly and accurately reconstruct hyperspectral images using less data. The images are

created using instruments that capture hyperspectral information succinctly, and the combination of algorithm and hardware makes it possible to

acquire hyperspectral images in less time and to store those images using less memory.

FULL STORY

Images at wavelengths from 470 nm to 632 nm within image cubes were reconstructed by the new algorithm from NC State and U Delaware and another state-of-art algorithm for the LEGO image cube. The top row represents the ground truth; the middle row shows the output of the new algorithm; and the bottom row shows the output of the other algorithm.

Credit: Dror Baron

Researchers from North Carolina State University and the University of Delaware have developed an algorithm that can quickly and accurately reconstruct hyperspectral images using less data. The images are created using instruments that capture hyperspectral information succinctly, and the combination of algorithm and hardware makes it possible to acquire hyperspectral images in less time and to store those images using less memory.

Hyperspectral imaging holds promise for use in fields ranging from security and defense to environmental monitoring and agriculture.

Conventional imaging techniques, such as digital photography, capture images across only three wavelengths -- or frequencies -- of light, from blue to green to red. Hyperspectral imaging creates images across dozens or hundreds of wavelengths. These images can be used to determine the materials found in whatever scene was imaged -- sort of like spectroscopy done at a distance.

But the technique does face some challenges.

For example, in a conventional imaging system, if an image has millions of pixels across three wavelengths, the image file might be one megabyte. But in hyperspectral imaging, the image file could be at least an order of magnitude larger. This can create problems for storing and transmitting data.

In addition, capturing hyperspectral images across dozens of wavelengths can be time-consuming -- with the conventional imaging technology taking a series of images, each capturing a different suite of wavelengths, and then combining them.

"It can take minutes," says Dror Baron, an assistant professor of electrical and computer engineering at NC State and one of the senior authors of a paper describing the new algorithm.

In recent years, researchers have developed new hyperspectral imaging hardware that can acquire the necessary images more quickly and store the images using significantly less memory. The hardware takes advantage of "compressive measurements," which mix spatial and wavelength data in a format that can be used later to reconstruct the complete hyperspectral image.

But in order for the new hardware to work effectively, you need an algorithm that can reconstruct the image accurately and quickly. And that's what researchers at NC State and Delaware have developed.

In model testing, the new algorithm significantly outperformed existing algorithms at every frequency.

"We were able to reconstruct image quality in 100 seconds of computation that other algorithms couldn't match in 450 seconds," Baron says. "And we're confident that we can bring that computational time down even further."

The higher quality of the image reconstruction means that fewer measurements need to be acquired and processed by the hardware, speeding up the imaging time. And fewer measurements mean less data that needs to be stored and transmitted.

"Our next step is to run the algorithm in a real world system to gain insights into how the algorithm functions and identify potential room for improvement," Baron says. "We're also considering how we could modify both the algorithm and the hardware to better compliment each other."

Story Source:

Materials provided by North Carolina State University. Note: Content may be edited for style and length.

Journal Reference:

1. Jin Tan, Yanting Ma, Hoover Rueda, Dror Baron, Gonzalo R. Arce. **Compressive Hyperspectral Imaging via Approximate Message Passing**. *IEEE Journal of Selected Topics in Signal Processing*, 2016; 10 (2): 389 DOI: 10.1109/JSTSP.2015.2500190

Cite This Page:

MLA

APA

Chicago

North Carolina State University. "Algorithm makes hyperspectral imaging faster." ScienceDaily. ScienceDaily, 18 February 2016. www.sciencedaily.com/releases/2016/02/160218133405.htm.

RELATED STORIES

New Superconducting Coil Improves MRI Performance

July 20, 2016 — A multidisciplinary research team has developed a high-temperature superconducting coil that allows magnetic resonance imaging scanners to produce higher resolution images or acquire images in a ... read more »

Algorithm Helps Analyze Neuron Images

Dec. 7, 2015 — Scientists looking for ways to stimulate the growth of neurons can spend hours painstakingly analyzing microscope images of cells growing in petri dishes. A new algorithm automates that process and ... **read more** »

Newly Developed System That Can Identify Fingerprints Noninvasively, Without Physical Contact

Mar. 12, 2015 — A "Forensic Hyperspectral Imager" device based on hyperspectral imaging techniques has been created by scientists. The system can differentiate layered fingerprints into individual prints and ... **read more** »

Hyperspectral Camera Shows Promising Results in Detection of Skin Cancer

Feb. 27, 2014 — A lightweight, handheld, ultra-precision hyperspectral camera has been developed for the detection of skin cancers and their precursors. From the surface of the skin, the camera recognizes early ... **read more** »