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Abstract

Almost all cell-phones and camcorders sold today are equipped with a CMOS
(Complementary Metal Oxide Semiconductor) image sensor and there is also a
general trend to incorporate CMOS sensors in other types of cameras. The sensor
has many advantages over the more conventional CCD (Charge-Coupled Device)
sensor such as lower power consumption, cheaper manufacturing and the potential
for on-chip processing. Almost all CMOS sensors make use of what is called a
rolling shutter. Compared to a global shutter, which images all the pixels at the
same time, a rolling-shutter camera exposes the image row-by-row. This leads to
geometric distortions in the image when either the camera or the objects in the
scene are moving. The recorded videos and images will look wobbly (jello effect),
skewed or otherwise strange and this is often not desirable. In addition, many
computer vision algorithms assume that the camera used has a global shutter, and
will break down if the distortions are too severe.

In airborne remote sensing it is common to use push-broom sensors. These
sensors exhibit a similar kind of distortion as a rolling-shutter camera, due to the
motion of the aircraft. If the acquired images are to be matched with maps or
other images, then the distortions need to be suppressed.

The main contributions in this thesis are the development of the three dimen-
sional models for rolling-shutter distortion correction. Previous attempts modelled
the distortions as taking place in the image plane, and we have shown that our
techniques give better results for hand-held camera motions.

The basic idea is to estimate the camera motion, not only between frames, but
also the motion during frame capture. The motion can be estimated using inter-
frame image correspondences and with these a non-linear optimisation problem
can be formulated and solved. All rows in the rolling-shutter image are imaged at
different times, and when the motion is known, each row can be transformed to
the rectified position.

In addition to rolling-shutter distortions, hand-held footage often has shaky
camera motion. It has been shown how to do efficient video stabilisation, in
combination with the rectification, using rotation smoothing.

In the thesis it has been explored how to use similar techniques as for the
rolling-shutter case in order to correct push-broom images, and also how to rectify
3D point clouds from e.g. the Kinect depth sensor.
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Chapter 1

Introduction

1.1 Motivation

Almost all cell-phones and camcorders sold today are equipped with a CMOS
(Complementary Metal Oxide Semiconductor) image sensor and there is also a
general trend to incorporate CMOS sensors in other types of cameras. The sensor
has many advantages over the more conventional CCD (Charge-Coupled Device)
sensor such as lower power consumption, cheaper manufacturing and the potential
for on-chip processing. Almost all CMOS sensors make use of what is called a
rolling shutter. Compared to a global shutter, which images all the pixels at the
same time, a rolling-shutter camera exposes the image row-by-row. This leads to
geometric distortions in the image when either the camera or the objects in the
scene are moving. Figure 1.1 shows some examples of different rolling-shutter dis-
tortions. The top left shows skew caused by a panning motion, the top right shows
distortions caused by a 3D rotation and the bottom left shows distortions from
a fast moving object (note that the car and the wheels are distorted differently).
Almost all computer vision algorithms assume that the camera used has a global
shutter. The work in this thesis will enable people to also use rolling-shutter cam-
eras and is focused on distortions caused by camera motion, e.g. top row in figure
1.1.

In airborne remote sensing it is common to use push-broom sensors. These
sensors exhibit a similar kind of distortion as a rolling-shutter camera, due to
the motion of the aircraft, see figure 1.1 for an example. If the acquired images
are to be matched with maps or other images, then the distortions need to be
suppressed. In this thesis it has been explored how to use similar techniques as
for the rolling-shutter case in order to correct push-broom images.

The work leading to this thesis was conducted within the Virtual Global Shut-
ters for CMOS Cameras project, and papers D and E in collaboration with the
Swedish Defence Research Agency (FOI).

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Geometrical distortions in images. Top left: slanted house due to
camera pan. Top right: bent pole due to camera 3D rotation. Bottom left: slanted
car and curved wheels due to fast object motion. Bottom right: curved path due
to aircraft motion.
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1.2 Outline

The thesis is divided into two parts. The first part gives a background to the
theory and sensors used in my work. The second part consists of five publications
covering rolling shutter and push-broom distortions.

1.2.1 Outline Part I: Background

The background part starts with chapter 2 which describes the sensors used in the
publications. Chapter 3 introduces the camera models. Chapter 4 describes sensor
motion estimation and how to correct for the geometrical distortions. Chapter 5
describes the evaluation measures used, and how the ground-truth dataset was
generated. The first part ends with chapter 6, concluding remarks.

1.2.2 Outline Part II: Included Publications

Preprint versions of five publications are included in Part II. The full details and
abstracts of these papers, together with statements of the contributions made by
the authors, are given below.

Paper A: Rectifying rolling shutter video from hand-held devices

Per-Erik Forssén and Erik Ringaby. Rectifying rolling shutter video
from hand-held devices. In CVPR’10, 2010.

Abstract:
This paper presents a method for rectifying video sequences from rolling shutter
(RS) cameras. In contrast to previous RS rectification attempts we model dis-
tortions as being caused by the 3D motion of the camera. The camera motion
is parametrised as a continuous curve, with knots at the last row of each frame.
Curve parameters are solved for using non-linear least squares over inter-frame
correspondences obtained from a KLT tracker. We have generated synthetic RS
sequences with associated ground-truth to allow controlled evaluation. Using these
sequences, we demonstrate that our algorithm improves over to two previously
published methods. The RS dataset is available on the web to allow comparison
with other methods.
Contribution:
This paper was the first to correct rolling-shutter distortions by modeling the 3D
camera motion. It also introduced the first rolling-shutter dataset. The author
contributed to the rotation motion model, produced the dataset, and conducted
the experiments.

Paper B: Efficient Video Rectification and Stabilisation for Cell-Phones

Erik Ringaby and Per-Erik Forssén. Efficient video rectification and
stabilisation for cell-phones. International Journal of Computer Vision,
96(3):335–352, 2012. http://dx.doi.org/10.1007/s11263-011-0465-8.
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Abstract:
This article presents a method for rectifying and stabilising video from cell-phones
with rolling shutter (RS) cameras. Due to size constraints, cell-phone cameras
have constant, or near constant focal length, making them an ideal application for
calibrated projective geometry. In contrast to previous RS rectification attempts
that model distortions in the image plane, we model the 3D rotation of the camera.
We parameterise the camera rotation as a continuous curve, with knots distributed
across a short frame interval. Curve parameters are found using non-linear least
squares over inter-frame correspondences from a KLT tracker. By smoothing a
sequence of reference rotations from the estimated curve, we can at a small extra
cost, obtain a high-quality image stabilisation. Using synthetic RS sequences with
associated ground-truth, we demonstrate that our rectification improves over two
other methods. We also compare our video stabilisation with the methods in
iMovie and Deshaker.
Contribution:
This paper extends paper A, by allowing camera motions that are non constant
during a frame capture, a new GPU-based forward interpolation, and the appli-
cation of video stabilisation. The author was the main source of the findings for
the importance of spline knot positions, the GPU based interpolation, and imple-
mented the stabilisation.

Paper C: Scan Rectification for Structured Light Range Sensors with
Rolling Shutters

Erik Ringaby and Per-Erik Forssén. Scan rectification for structured
light range sensors with rolling shutters. In IEEE International Con-
ference on Computer Vision, Barcelona, Spain, November 2011. IEEE,
IEEE Computer Society

Abstract:
Structured light range sensors, such as the Microsoft Kinect, have recently become
popular as perception devices for computer vision and robotic systems. These
sensors use CMOS imaging chips with electronic rolling shutters (ERS). When
using such a sensor on a moving platform, both the image, and the depth map, will
exhibit geometric distortions. We introduce an algorithm that can suppress such
distortions, by rectifying the 3D point clouds from the range sensor. This is done by
first estimating the time continuous 3D camera trajectory, and then transforming
the 3D points to where they would have been, if the camera had been stationary.
To ensure that image and range data are synchronous, the camera trajectory
is computed from KLT tracks on the structured-light frames, after suppressing
the structured-light pattern. We evaluate our rectification, by measuring angles
between the visible sides of a cube, before and after rectification. We also measure
how much better the 3D point clouds can be aligned after rectification. The
obtained improvement is also related to the actual rotational velocity, measured
using a MEMS gyroscope.
Contribution: This paper was the first to address the rolling-shutter problem
on range scan sensors. Compared to paper A and paper B, the cost function is
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defined on 3D features, and the full 6 DOF motion can be estimated and corrected
for. The author contributed to the motion estimation, feature rejection steps, and
the experiments.

Paper D: Co-alignment of Aerial Push-Broom Strips using Trajectory
Smoothness Constraints

Erik Ringaby, Jörgen Ahlberg, Per-Erik Forssén, and Niclas Wadströmer.
Co-alignment of aerial push-broom strips using trajectory smoothness
constraints. In Proceedings SSBA’10 Symposium on Image Analysis,
pages 63–66, March 2010

Abstract:
We study the problem of registering a sequence of scan lines (a strip) from an
airborne push-broom imager to another sequence partly covering the same area.
Such a registration has to compensate for deformations caused by attitude and
speed changes in the aircraft. The registration is challenging, as both strips contain
such deformations.

Our algorithm estimates the 3D rotation of the camera for each scan line, by
parametrising it as a linear spline with a number of knots evenly distributed in one
of the strips. The rotations are estimated from correspondences between strips of
the same area. Once the rotations are known, they can be compensated for, and
each line of pixels can be transformed such that ground trace of the two strips are
registered with respect to each other.
Contribution: This paper explored the possibility of using the previously in-
troduced rolling-shutter correction scheme to register push-broom strips, by using
smoothness constraints. The author contributed to the registration and conducted
the experiments.

Paper E: Co-aligning aerial hyperspectral push-broom strips for change
detection

Erik Ringaby, Jörgen Ahlberg, Niclas Wadströmer, and Per-Erik Forssén.
Co-aligning aerial hyperspectral push-broom strips for change detec-
tion. In Proceedings of SPIE Security+Defence, volume 7835, Tolouse,
France, September 2010. SPIE, SPIE Digital Library

Abstract:
We have performed a field trial with an airborne push-broom hyperspectral sensor,
making several flights over the same area and with known changes (e.g., moved
vehicles) between the flights. Each flight results in a sequence of scan lines forming
an image strip, and in order to detect changes between two flights, the two resulting
image strips must be geometrically aligned and radiometrically corrected. The
focus of this paper is the geometrical alignment, and we propose an image- and
gyro-based method for geometric co-alignment (registration) of two image strips.
The method is particularly useful when the sensor is not stabilized, thus reducing
the need for expensive mechanical stabilization. The method works in several
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steps, including gyro-based rectification, global alignment using SIFT matching,
and a local alignment using KLT tracking. Experimental results are shown but
not quantified, as ground truth is, by the nature of the trial, lacking.
Contribution: This paper extends paper D by using gyroscope measurements
for the strip rectification. In addition to this a non-rigid registration is performed.
The author contributed to the gyro-camera transformation, to the strip registra-
tion and conducted the experiments.

Other Publications

The following publications by the author are related to the included papers.

Gustav Hanning, Nicklas Forslöw, Per-Erik Forssén, Erik Ringaby,
David Törnqvist, and Jonas Callmer. Stabilizing cell phone video us-
ing inertial measurement sensors. In The Second IEEE International
Workshop on Mobile Vision, Barcelona, Spain, November 2011. IEEE.

Johan Hedborg, Erik Ringaby, Per-Erik Forssén, and Michael Felsberg.
Structure and motion estimation from rolling shutter video. In IWMV
workshop at ICCV’11, 2011.



Chapter 2

Sensors

All sensors used in this thesis share the property of sequential acquisition of an
image frame. How the sensors work will be described in the following sections.

2.1 Rolling-shutter sensors

The function of a camera shutter is to allow light to pass through for a determined
period of time. The shutter used can either be mechanical or electronic and have
a global, block or rolling exposure method. In a global shutter camera, all pixels
in a frame are imaged at a single time instance. Rolling shutter on the other
hand is a technique used when acquiring images by scanning the frame. Instead
of imaging the scene at a single time instance, the image rows are sequentially
reset and read out. The rows which are not being read out are continued to be
exposed. Figure 2.1 shows the difference between image integration with a global-
shutter and rolling-shutter camera. The rolling-shutter method has the advantage
of longer integration times, as shown in the bottom figure, which increases the
sensitivity.

The two most common image sensors used in digital cameras are the CCD
(Charge-Coupled Device) and the CMOS (Complementary Metal Oxide Semicon-
ductor) image sensors. Generally, CCD sensors use global shutters and CMOS
use rolling shutters. There are CMOS sensors with a global shutter, where all the
pixels are exposed to light at the same time and at the end of integration time
they are transferred to a light-shielded storage area simultaneously. After this the
signals are read out.

In addition to increased sensitivity, the CMOS sensors are also cheaper to
manufacture, they use less power and it is also simple to integrate other kind of
electronics on the chip. Almost all camera equipped cellphones make use of a
rolling shutter and the CMOS sensor is gradually replacing the CCD sensor in
other segments such as camcorders and video capable SLR’s. The rolling shutter
will however introduce distortions when the scene or camera is moving, and the
amount of these distortions depend on how fast the shutter “rolls”. A rule of thumb

9
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Figure 2.1: Rolling-shutter image integration.

is that the higher the resolution is, the slower the sensor will be, and furthermore
expensive sensors are usually faster. Almost all computer vision algorithms assume
a global shutter camera, but techniques from this thesis will enable researchers and
others to also use rolling shutter cameras.

2.2 Kinect

In 2010, Microsoft released the Kinect sensor which is designed to provide motion
input to the Xbox 360 gaming device. The sensor has gained popularity in the
vision community due to its ability to deliver quasi-dense depth maps in 30 Hz,
combined with a low price. The hardware consists of a near infrared (NIR) laser
projector (A), a CMOS colour sensor (B) and a NIR CMOS sensor (C), see figure
2.2.

The laser projector is used to project a structured light pattern onto the scene.
The NIR CMOS sensor images this pattern and the device uses triangulation to
create a depth map. The image resolution is 640 × 480 when using an update
of 30 Hz, but it is also possible to receive NIR and colour frames in 1280 × 1024
resolution. The depth map can be obtained at the same time as either the NIR
image or the colour image, but the colour and NIR images cannot be obtained at
the same time.

Both the NIR and colour sensors have electronic rolling shutters. Since the
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Figure 2.2: The Kinect Sensor, (A) NIR laser projector, (B) CMOS colour sensor,
(C) CMOS NIR sensor

Figure 2.3: Distortions in the NIR and depth images caused by fast sensor motion.

Kinect sensor is designed to be stationary and objects in front of it do not move
that fast (or very close to the sensor), the rolling-shutter distortions are usually
not a big problem. If on the other hand the sensor is used on a mobile platform it
will have noticeable distortions. See figure 2.3 for an example of a fast rotation.
The two image sensors are not synchronised, so the same rows in the depth image
and the colour image are, in general, not imaged at the same time.

2.3 Push-broom sensor

Push-broom sensors are commonly used in airborne remote sensing. The images,
also called strips or swaths, from a push-broom sensor have similar geometrical
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Figure 2.4: Left: How the 1D sensor “paints” the image. Right: Different spectral
bands separated on the sensor using a prism.

distortions as those from a rolling-shutter sensor, but the sensors differ a lot in
their design.

Instead of capturing a two dimensional image, the sensor is one dimensional
in the spatial domain and “paints” the image by exploiting the ego-motion of the
moving platform, see figure 2.4 left. The sensor itself is two dimensional and a
prism refracts the light into different wavelengths along one of the axes of the
hyper-spectral sensor (figure 2.4, right). The number of spectral bands depends
on the sensor used.

If the imaging platform (e.g. aircraft) moves in a linear trajectory we would
have to solve a simple problem, but this rarely the case. When the aircraft rotates,
or moves away from the path, geometric distortions will be present in the image.

There are also hyper-spectral sensors which use two spatial dimensions, but
record the different wavelengths at different time steps. In this case, the reg-
istration has to be done across different spectral bands instead, but this is not
considered here.

2.4 Other sensors

Other similar sensors not covered in this thesis are crossed-slits [16], and moving
LIDAR[2].



Chapter 3

Camera models

Some computer vision algorithms operate only in the image plane and do not care
which camera has been used to record the image. We need a camera model for
our algorithm and use the pin-hole camera model. The following sections will
describe the standard (global-shutter) model and our rolling-shutter version. Lens
distortions are not considered in this work.

3.1 Pin-hole camera with global shutter

The pin-hole camera model is a simple model which describes how 3D points in
the world project onto the image plane. The camera aperture corresponds to a
point and no lenses are used to describe the focusing of light. Figure 3.1 shows
how a 3D object projects onto an image plane.

The relationship seen in figure 3.1 can be expressed as:

x

f
=
X

Z
(3.1)

y

f
=
Y

Z
(3.2)

This relationship, together with a translation of the origin, skew and aspect
ratio can also be described in matrix notation using homogeneous coordinates:

λxλy
λ

 =

f s cx
0 fα cy
0 0 1

 XY
Z

 (3.3)

x = KX (3.4)

The matrix K contains the intrinsic or internal camera parameters, and de-
scribes the camera. cx and cy describe the translation of the principal point
required to move the origin into image coordinates. The focal length f , in x and

13
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Figure 3.1: The pinhole camera model projects a 3D point X̃ onto the image plane.

y direction may be different due to the aspect ratio α. The pixels may also be
skewed, but in most cases s = 0.

Cameras used in this thesis, e.g. the one in iPhone 3GS, have a (near) constant
focal length, which enables us to calibrate the camera once. We have also seen
that transferring the intrinsic camera parameters between cameras of the same
model works well. See section 3.3 for how the parameters are calibrated.

The extrinsic or external camera parameters describe how the camera relates
to a world coordinate system. This relation, or transformation, can be described
as a translation d and a rotation R and expressed as a matrix multiplication:

x = K[R|d]X. (3.5)

3.2 Pin-hole camera with rolling shutter

When a rolling-shutter camera is stationary and is imaging a rigid scene, the
same model as the global-shutter case may be used. The model must however
be changed when the camera is moving. The internal camera parameters are still
the same (we have fixed focal lengths), but the external parameters are now time
dependent. By assuming that the scanning begins at the top row down to the
bottom row we get:

x = K[R(t)|d(t)]X, (3.6)

where t = 0 represents the first row of the frame.
With this representation we can describe the camera’s positions and orienta-

tions during a frame capture, and can correct for the geometrical distortions due
to the camera motion.
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3.2.1 Different motion models

Instead of modelling the full camera motion as the source of the distortions one can
simplify the model to three different special cases: pure rotation, pure translation,
and imaging of a planar scene. By choosing one of these models the estimation is
simplified, which will be described in section 4.2. The pure rotation case assumes
that the camera only rotates around the optical centre, which simplifies equation
3.6 to:

x = KR(t)X. (3.7)

If the camera is imaging a planar scene the motion can be described by:

x = KR(t)(X + d(t)) = KR(t)D(t)X̃ , (3.8)

where D =

1 0 d1

0 1 d2

0 0 d3

 , (3.9)

and X̃ is a three element vector containing the non-zero elements of X, and a 1 in
the third position. If the motion is a pure translation, 3.8 simplifies to:

x = KD(t)X̃ . (3.10)

In paper A we came to the conclusion that the rotation model was the best
for hand-held camera motions. When a user holds the camera, the main cause
for the motion (and also the cause for the distortions) is rotation. If we only
look at changes during a short time interval, e.g. 2-3 frames, the camera does
not translate significantly. A notable exception to this is when translation is the
dominant component e.g. footage from a moving platform, such as a car.

3.3 Camera calibration

The algorithms in this thesis require calibrated cameras. We use the OpenCV
implementation of Zhang’s method [15] for camera calibration, which requires a
number of images of a planar checkerboard pattern from different orientations.
The intrinsic parameters are acquired this way and the lens distortion parameters
are neglected.

On a rolling-shutter camera, an additional parameter needs to be estimated
also, the readout time. The rolling-shutter chip frame period 1/f (where f is the
frame rate) is divided into a readout time tr, and an inter-frame delay, td as:

1/f = tr + td . (3.11)

Figure 3.2 shows this relation. The inter-frame delay is useful to know when the
continuous camera motion is estimated. For more details on the readout time
calibration, see Appendix A in Paper B.
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ttr td

1/f

Figure 3.2: Relation between the frame period 1/f , readout time tr, and inter-
frame delay td.

3.4 Push-broom

The push-broom sensor exploits the ego-motion of the moving platform when
creating the image. We do however neglect the translational component of the
motion and model the distortion of a strip as a sequence of rotation homographies:

H(t) = KR(t)K−1 , (3.12)

This means that we model the sensor as rotating purely about its optical centre
and thus the imaged ground patch is modelled as being on the interior surface of a
sphere. This will cause some distortions in the reconstruction, but if the radius of
the sphere (i.e. the aircraft altitude is large enough (compared to the strip length),
this distortion is small.



Chapter 4

Geometric distortion
correction

The distortions corrected for in this thesis are those caused by motion of the
sensor. This is done by exploiting the continuity of the camera motion in rolling-
shutter video. Feature points are detected and tracked across frames and used to
estimate the camera ego-motion. The distortions are more severe when shooting
video compared to pictures, since the user usually tries to hold the camera steady
for pictures. When depth is available, as for the Kinect sensor, the 3D points can
also be used to estimate the motion.

Co-alignment of push-broom strips is a bit different since each strip comes from
a single flight and we typically only have a few strips (compared to many frames
in a video). Also, they might not overlap as much as two consecutive frames in a
video, but within each strip the sensor has a continuous motion.

4.1 Point correspondences

For rolling-shutter video we detect points using the good features to track detector
[13]. These are then tracked using the KLT-tracker [8] in order to acquire corre-
spondences across frames. The KLT-tracker uses an image patch in one image
and estimates the patch position in the next frame. It does so by using a spatial
intensity gradient search which minimises the Euclidean distance between the cor-
responding patches. To be able to cope with large motions we use a scale pyramid
approach.

We employ a cross-checking step, as in [1], which uses an additional tracking
from the second image back to the first one. Only those points which return to
their original position are regarded as inliers. Figure 4.1 shows points rejected
using a threshold of 0.5 pixels in red and accepted points in green.

Since push-broom strips are acquired at different times, tracking is difficult to
do. Less overlap than between video frames and also larger changes in illumination

17
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Figure 4.1: Tracked points between two frames. Rejected points in red, and ac-
cepted points in green.

makes feature matching a more suitable method for correspondence search than
e.g. KLT. We use SIFT features and match them to acquire correspondences for
an initial registration of the strips.

4.2 Camera Motion estimation

The sparse point correspondences can be used to estimate the camera motion.
The assumption is that the camera is moving in a static scene, so all displacement
vectors are due to camera motion.

The camera motion is estimated through iterative non-linear least squares
(Levenberg- Marquardt) by minimisation of the cost function associated with the
camera motion model.

Since the image rows are exposed at different times, one would like to have the
camera pose for each of them. This will result in a high number of parameters to
be estimated and we therefore model the motion as a spline. In that way, we only
estimate the parameters for a certain number of points along this curve, called
knots. This spline exploits that the motion is smooth and interpolates all poses
between the knots.

4.2.1 Motion parametrisation

In section 3.2 the different motion models were described and for the full model
the motion is represented as a sequence of rotations and translations (the knots).
The translations are represented as a three element vector and the rotation can be
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represented as a 3× 3 matrix R, a unit quaternion, or a three element axis angle
vector n. During the optimisation the axis angle representation is used since it is
a minimal representation of a 3D rotation. Converting from this representation to
a rotation matrix is done using the matrix exponent, which for rotations simplifies
to Rodrigues formula:

R = expm(n) = I + [n̂]x sinφ+ [n̂]2x(1− cosφ) (4.1)

where [n̂]x =
1

φ

 0 −n3 n2

n3 0 −n1

−n2 n1 0

 . (4.2)

n̂ is the corresponding unit vector to n, which defines the axis where the rotation
is taking place and φ is the magnitude of n which corresponds to the rotation angle
around the axis. To convert a rotation matrix back to vector form, the matrix
logarithm can be used and for rotations the following closed form exists:

n = logm(R) = φn̂ , where


ñ =

r32 − r23

r13 − r31

r21 − r12


φ = tan−1(||ñ||, trR− 1)

n̂ = ñ/||ñ|| .

(4.3)

For interpolation of translations we are using a linear interpolation:

dinterp = (1− w)d1 + wd2 , (4.4)

where d1 and d2 are two translation vectors (three elements) and w ∈ [0, 1] is the
weight parameter. Interpolation of rotations is slightly more complicated due to
the periodic structure of SO(3). We use SLERP (Spherical Linear intERPolation)
[14] with an interpolation parameter τ ∈ [0, 1] between two knot rotations:

ndiff = logm (expm(−n1)expm(n2)) (4.5)

Rinterp = expm(n1)expm(τndiff). (4.6)

n1 and n2 are two rotation axis-angle vectors and Rinterp is the resulting rotation
matrix.

4.2.2 Optimisation

By assuming that the row which is exposed first is the top one, the row number
is proportional to time. When using the rotation only model, two corresponding
homogeneous image points x, and y are projected from the 3D point X as:

x = KR(Nx)X , and y = KR(Ny)X (4.7)

where Nx and Ny correspond to the time parameters, e.g. the row number for
point x and y respectively. This gives us the relation:

x = KR(Nx)RT (Ny)K−1y = Hy . (4.8)
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The positions of the knots are discussed in paper B. When these positions have
been decided, the rotation from an arbitrary row Ncurr (relative to the first row in
the first image) is acquired by:

R = SLERP(nm,nm+1, τ) , for (4.9)

τ =
Ncurr −Nm

Nm+1 −Nm
, where Nm ≤ Ncurr ≤ Nm+1, (4.10)

and Nm, Nm+1 are the two neighbouring knot times.
The cost function to be minimised is the summed (symmetric) image-plane

residuals of a set of corresponding points xk ↔ yk:

J =

K∑
k=1

d(xk,Hyk)2 + d(yk,H
−1xk)2, (4.11)

where d(x,y)2 = (x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2 . (4.12)

Here K is the total number of correspondences between two images. It is also
possible to use correspondences from more than two images in the cost function.
When using the rotation only model, H is defined in (4.8), and here it would be
beneficial to use a small number of frames per optimisation, in case the motion
also includes translations. When using the planar scene model, H is defined by:

H = KR(Nx)D(Nx)D(Ny)−1RT (Ny)K−1. (4.13)

If the rotations are replaced with the identity matrix, the pure translation case is
estimated instead.

If the 3D points X also are known, as in paper C, the cost function can be
defined on these instead, resulting in estimation of the full 6 degrees of freedom
camera motion imaging an arbitrary scene. If X1 and X2 are two corresponding
3D points reconstructed from two different images and depth maps, they can be
transformed to the position X0. This is the position where the reconstructed point
should have been, if it was imaged at the same time as the first row in the first
image:

X0 = R(N1)X1 + d(N1) (4.14)

X0 = R(N2)X2 + d(N2). (4.15)

By assuming that the scene is static, the difference between these points can be
used to estimate the motion, resulting in the minimisation of:

J =

K∑
k=1

||R(N1,k)X1,k + d(N1,k)−

R(N2,k)X2,k − d(N2,k)||2, (4.16)

where N1,k and N2,k are the rows where the kth 3D point is observed in the first
and second image respectively.
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4.3 Image rectification

In this thesis image rectification is the process of resampling the input image to
a version which looks more rigid. When the camera motion has been estimated,
i.e. its pose at the time instances of the knots (which corresponds to a certain
image row) the poses for all the image rows can be acquired through interpolation.
By using a regular grid on the input image, each row can be transformed by a
different homography to create the forward mapping. The coordinate system to
be transformed to can be chosen as a specific row, e.g. the one corresponding to
the first or middle row of the image. This means that this reference row will be
exactly the same in the input image and the rectified image. When using a pure
rotation as motion model the rectification equation becomes:

x′ = KRrefR
T (N)K−1x, (4.17)

where x is the input image coordinate, x′ its rectified position, RT the camera’s
orientation the time instance the pixel was imaged and Rref the rotation for chosen
reference row.

The forward interpolation of the image can be done in different ways. Delaunay
triangulation of the transformed grid, with the input pixels at each vertex together
with interpolation of the Barycentric coordinates within each triangle will create a
filled output image. This method (griddata in Matlab) is however very slow, and an
alternative method is to “smear” each input pixel into a region (e.g. 3× 3 closest
output grid locations). The output RGB values are updated as (wr,wg,wb, w)
together with a weight w, that depends on the grid location u, according to:

w(u) = exp(−.5||u− x̃′||2/σ2) (4.18)

where σ is a smoothing parameter. After looping over all pixels they are normalised
by w, creating an output RGB image. If the camera motion is very fast, a local
3 × 3 region may not be enough to fill all output pixels and a larger region has
to be used. This increases the computation time and a faster method without
any risk of holes is to do a mesh warping on a graphics processing unit (GPU).
A mesh can be placed on the input image and the GPU transforms each row to
their rectified position. Values between rows are automatically interpolated (in
hardware) so there is no risk of holes.

If equation 4.17 is reversed, the equation for the inverse mapping becomes:

x = KR(N)RT
refK

−1x′ . (4.19)

It is not possible to use this inverse interpolation correctly, since different pixels
within a row should be transformed with different homographies, see figure 4.2.
The pixels within a row in the input image do however share the same homography
and can be used to correctly transform the image.

If the depth is known, the 3D points can be rectified by:

X′ = Rref(R(N)X + d(N)) + dref, (4.20)
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Different homographies

i
i+1
i+2

row

Hf

Figure 4.2: Left: Distorted input image. Right: Rectified output image.

where X is the original distorted 3D points and X′ is the rectified version. Also,
if the depth map and video frame are to be rectified, the same procedure as above
can be used by projecting the 3D points onto the image plane and do forward
interpolation.

4.4 Stabilisation

The rectification technique described in section 4.3 allows for an efficient imple-
mentation of video stabilisation. When an image is rectified, all the rows are
transformed to a common coordinate system corresponding to the reference row.
Instead of transforming each image to e.g. the middle row, one can do a tempo-
ral smoothing of all reference rows in the image sequence and use the smoothed
versions instead.

Smoothing of rotations can be achieved by matrix averaging:

R̃k =

n∑
l=−n

wlRk+l (4.21)

where the temporal window is 2n + 1 and w are weights for the input rotations
Rk. The output of (4.21) is not guaranteed to be a rotation matrix, but this can
be enforced by constraining it to be orthogonal [5]:

R̂k = USVT , where (4.22)

UDVT = svd(R̃k) , and S = diag(1, 1, |U||V|) .

The motion estimation is done during a short frame interval, and since all
optimisations have different origins they have to be transformed to a common
coordinate system. The pure rotation model will probably not hold for a long
video sequence. The stabilisation will be a restriction on the orientation, and
there will still be some translation left, but not so much to be disturbing.



Chapter 5

Evaluation

This chapter describes the generated ground-truth dataset, and the methods used
for evaluation of the algorithms.

5.1 Ground truth generation

In order to do a controlled evaluation, a synthetic dataset was developed for paper
A and extended in paper B. The Autodesk Maya software was used to generate
different camera motions in a 3D scene. Rolling-shutter frames were simulated by
combing 480 global-shutter frames. One row in each global-shutter frame was used
to create a rolling-shutter frame, starting at the top row and sequentially moving
down to the bottom row. Figure 5.1 shows different kinds of motions in the scene.

The ground-truth for rolling-shutter rectification is the global-shutter frame.
Which global-shutter frame to be used depends on which time instance (i.e. which
row) the distorted image is reconstructed to. Global-shutter frames corresponding
to the first, middle and last row have been generated. Depending on the motion,
some parts of the ground-truth frame (borders and occlusions) are not visible in the
rolling-shutter frame. Visibility masks have been generated that indicate which
pixels in the ground-truth frames can be reconstructed from the corresponding
rolling-shutter frame.

5.2 Evaluation measures

In paper A we compared our rectification to the ground-truth by calculating the
average Euclidean distance to the colour pixel values in the ground truth images,
within the valid mask. Pixels that deviate more than a certain threshold are
counted as incorrect. This measure is however more sensitive in high-contrast
regions, than in regions with low contrast. In paper B, we therefore used a variance-

23
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Figure 5.1: The four categories of synthetic sequences. Left to right, top to bottom:
#1 rotation only, #2 translation only, # full 3DOF rotation. and #4 3DOF
rotation and translation.

normalised error measure:

ε(Irec) =

3∑
k=1

(µk − Irec,k)2

σ2
k + εµ2

k

. (5.1)

Here µk and σk are the means and standard deviations of each colour band in a
small neighbourhood of the ground truth image pixel (we use a 3× 3 region), and
ε is a small value that controls the amount of regularisation. This measure also
has the benefit of being less sensitive to sub-pixel rectification errors.

Video stabilisation is difficult to evaluate since we both want to reduce the
image plane motions and maintain a correct geometry. When no ground-truth is
available, one can evaluate image plane motion by comparing consecutive frames
in a video with a certain motion. A video from when a person walking forward
and holding the camera, will be shaky, but consecutive frames will be very similar
if the stabilisation algorithm is good and is thus used as an evaluation measure.

When evaluating the rectification of 3D point clouds, a practical method is
to measure geometrical properties of a known object, e.g. comparing the angles
between the visible sides of a box, before and after rectification. Ground-truth
angles are obtained by imaging the box when the sensor was stationary, see figure
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Figure 5.2: Left: Depth frame from a static sensor. Right: Manually marked
planes on frame captured during sensor rotation.

Figure 5.3: Result of co-alignment of push-broom strips. Alignment errors show
up as red or blue areas. Correctly aligned pixel get magenta colour.

5.2. The plane angles can be estimated by finding the cube normals using RANSAC
[3] and compute the angle between two normals using the formula:

Θk,l = sin−1(‖n̂k × n̂l‖) , (5.2)

where n̂k and n̂l are normal vectors for the two planes.
In paper D and E push-broom data were considered, without any ground-truth.

Visual inspection was used to evaluate the registration quality, as it is quite easy
to observe, see figure 5.3.



26 CHAPTER 5. EVALUATION



Chapter 6

Concluding remarks

This chapter summarises the main results and discusses possible areas of future
work.

6.1 Results

The methods presented in this thesis can be used to increase the usability of rolling-
shutter cameras, both for researchers and end users. The main contributions are
the development of the three dimensional models for rolling-shutter distortion cor-
rection. Paper A was the first paper describing this and gave superior results for
hand-held camera motions compared to image-based methods. We also introduced
the first rolling-shutter dataset which enables other researchers to evaluate their
algorithms. Paper B introduced an efficient video stabilisation method in com-
bination with the image rectification. A new GPU-based forward interpolation
was also introduced and the paper extended the motion model to cope with faster
motions.

When the Kinect sensor is used on mobile platforms it has to be moved slowly,
or in a move-stop-look image acquisition so that the rolling-shutter artifacts are
kept at a minimum. With our technique from paper C the data is rectified, and
the sensor can be moved in an arbitrary manner.

Paper D and E introduced methods for co-aligning push-broom strips with
similar techniques as for the rolling-shutter case, using image only data (paper D)
and image data combined with gyroscope measurements (paper E).

6.2 Future work

The image-based motion estimation assumes that the scene is stationary. During
evaluation it has been shown that it is robust to some object motion in the video,
but if a large part of the optical flow originates from fast moving objects, a motion
segmentation (and local rectification) may be required.

It would also be interesting to improve the quality and the temporal resolution

27
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of the motion estimation. Possible ways may be to use higher order splines, use
a more dense optical flow, variable knot positions, to model lens distortion and
optimisation over a whole sequence. This may enable the algorithm to cope with
even faster camera motions, such as when it is attached to a vibrating engine.

Another interesting future work would be an auto-calibration step, since it is
quite cumbersome to manually calibrate each different camera model, and also to
combine the rectification with some other application such as panorama stitching,
augmented reality and so on.

In [6] a video rectification and stabilisation method based on accelerometer and
gyroscope measurements was shown to be successful. Future work will be to also
try to rectify 3D point clouds generated by the Kinect using these kind of sensors.

The co-alignment of push-broom strips is currently not good enough for an au-
tomatic change-detection. A more advanced motion model and possible estimation
or incorporation of a height map may be required.
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