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Noise Processing  (Maximum Noise Fraction) 
Assumptions: 

1. Many of the spectrally important features that appear in hyperspectral data are subtle. 
• Noise in hyperspectral data can easily overwhelm subtle hyperspectral features. 
• Data are contiguous over a large spectral range, including very noisy spectral ranges.  
• There generally exist bands that are essentially noise, e.g., in strong water absorption 

bands,  as well as bands that have relatively low S/N.   
• Groups of bands are frequently highly correlated. Large fluctuations in these regions 

can mask subtle features that occur within the bands in those regions 
2.  Careful noise removal will be required in order to enable extraction of useful 

information.  
Task: Remove noise with minimal information loss 
 
Most of the methods considered so far are not well-suited to the current task.  We have been 
particularly concerned with procedures designed to deal with noise within individual bands 
(convolution filters, frequency domain filters). While these tools remain very important, the 
greater concern is with noise in the spectral domain.  The only appropriate tool we have 
examined so far is Principal Components Analysis (PCA).  That is problematic because the 
procedure equates variance with information and is based on the assumption that the data 
structure can be described by a multi-dimensional normal distribution.   A related, much more 
appropriate procedure, the Maximum Noise Fraction (MNF) transformation, exists and is well 
worth considering.  
Maximum Noise Fraction (MNF) 
MNF is a linear transformation that consists of two separate PCA rotations and a noise whitening 
step: 

• Use the noise covariance matrix to decorrelate and rescale the noise in the data (noise 
whitening).  This results in transformed data in which the noise has unit variance and no 
band-to-band correlations.  

• Perform a standard Principal Components transformation of the noise-whitened data.  

The MNF transform1

The goal of the MNF transform is to select component in a way that maximizes the signal-to-
noise ratio (rather than the information content).  To do this one must know the covariance 
matrices of both the signal, Σ, and the noise, Σn. The signal covariance, Σ, is computed in the 
same way as is done for the PCA transform.  The noise covariance, Σn, may be estimated using a 
flat-field image.  Absent this, it is necessary to estimate the noise using in-scene statistics. 

, like the PCA transform, is an eigenvector procedure, but based on the 
covariance structure of the noise in the image data set.  The MNF is much more effective at 
creating a set of images that is ordered according to image quality. This results in more reliable 
identification and elimination of noisy components and allows for targeted smoothing of those 
noisy components that are deemed to contain useful information.   

 

                                                 
1 Green, A.A., M. Berman, p. Switzer and M.D. Craig (1988) A transformation for ordering multispectral data in 

terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Rmote 
Sensing, 26(1):65-74. 
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Noise covariance determined from a flat-field image 
An estimate of the noise covariance can be obtained using a combination of a dark current image 
and a flat-field image, i.e., an image with all light blocked, and an image of a spectrally flat, 
evenly illuminated reflector. So, if  
  DN = mL + b + n  

where:  DN = recorded count (digital number),  
 m and b are gain and bias and n is noise.   

Then for L = 0,    DNo = b + n   is the dark current count. If the noise has zero mean, then the 
average dark current image is b.  The gain is then given by:   

o

k

DN DNm
L
−

=    [counts per radiance unit] 

If noi is the standard deviation of the dark noise image in band i expressed in digital counts, then 
the standard deviation expressed in radiance 
units is: i oi in mσ =

 
If Li.5 is the radiance 

in the ith band for a 50% reflector then the 
SNR for a 50% reflecting target is: 

i5 iSNR L= σ  

 
Comment:  calibration involves recording 
DNk at known radiance level (Lk) and DNo 
dark (L=0). 

 
  

Predicted S/N for a particular AVIRIS scene, 
based on a nominal 0.5 reflectance target. 
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In-scene estimate of the noise covariance 
An underlying assumption here is that the noise structure will be more accurately characterized 
by a mulit-dimensional normal distribution and will be uncorrelated with the information (signal) 
in the image data.  A procedure to estimate the noise covariance, the Minimum/Maximum 
autocorrelation factors (MAF), has been designed2

More precisely, let B be the transform that orthogonalizes the noise (i.e., B is the PCA transform 
for the noise image).  If we transform the image data Z(x) using the noise eigenvectors, i.e., 
Q(x) = B' Z(x) and then normalize the Qi(x) values by (uni)1/2, then the noise variance in each of 
the normalized bands should be the same, i.e., 

.  The procedure exploits the fact that signal 
exhibit strong spatial correlation among nearby pixels in an image, while the spatial correlation 
for noise is very weak. The idea can be illustrated using two adjacent pixels, p1 and p2, with 
essentially the same target. Subtracting the two pixels then yields:  s1 + n1 – (s2 + n2) ≈ n1 – n2  
where s1 ≈ s2  is the signal and n1 and n2 are noise. 
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where R(x) is the transformed image data (transformed using the eigenvectors of the noise 
covariance) normalized by the standard deviation of the noise in the transformed space.  We have 
then "whitened" the noise in the transform space between the Ri bands. 

We then compute the covariance matrix for the image data in the transform space and transform 
the R(x) data into a new principal component space.  The PC’s should now be ordered in a 
conventional fashion with the noise increasing with the PC rank. 

The inherent dimensionality of the data is determined by examination of the final eigenvalues 
and the associated images. The data space can be divided into two parts: one part associated with 
large eigenvalues and coherent eigenimages, and a complementary part with near-unity 
eigenvalues and noise-dominated images. By using only the coherent portions, the noise is 
separated from the data, thus improving spectral processing results.  
 
Noise removal and reconstruction of the original, noise-reduced image data 
1. Eliminate the first several MNF Bands 

This is roughly equivalent to eliminating the last several PC bands, except that the MNF 
bands have been adjusted to emphasize the noise content. 
If the noise in the original images had been uncorrelated with the image data and the noise 
had been equal from band to band, the effect would be the same for the PCA and for the 
MNF processing. 

2. Severely smooth the noise in the next several MNF bands. 
For bands that appear to have some significant information but are still quite noisy, it can be 
useful to spatially smooth the data in order to minimize the noise while keeping the bulk of 
the information.  The smoothing can be more severe than would be acceptable in the original 
image data since the noise has been largely isolated 

3. Inverse Transform to obtain relatively noise-free image data. 

                                                 
2 Green, A.A. and P. Switzer (1984) Min/Max autocorrelation factors for multivariate spatial imagery. Tech. Report 

6, Dept. of Statistics, Stanford University 


