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ABSTRACT

Puladas, Charan. M.S.E.E., Department of Electrical Engineering, Wsigie University, 2016.
Accelerated Hyperspectral Unmixing with Endmember Variability via the SunadwetdAlgorithm

The rich spectral information captured by hyperspectrasses has given rise to a num-
ber of remote sensing applications, ranging from vegetadssessment and crop health
monitoring, to military surveillance and combatant id&o#tion. However, due to lim-
ited spatial resolution, multiple ground materials gehgreontribute, i.e. mix, to form
the spectrum recorded for a single pixel. The unmixing m@obkonsiders the inverse
problem of determining the underlying material spectrdledaendmembers, from sen-
sor measurements. While classical unmixing approachesdeteeministic in nature and
did not attempt to identify in-scene materials, recent méshuse labeled training data to
generate statistical models of endmember variabilitiesparform statistical unmixing for
simultaneous material identification and abundance esbma

However, the computational complexity of statistical urimg is O(N?), cubic in the
numberN of sensed spectral bands. This large computational dersatadds with con-
tinuous technological improvements that are dramatiéatlyeasing the spectral resolution
of remote spectroscopy methods. In particular, currend@etechnology is transitioning
from the hyperspectral realm (hundreds of spectral bandket ultraspectral realm (thou-
sands of spectral bands) and eclipsing the ability to perfatistical unmixing.

In this thesis we develop a computationally tractable stiatil unmixing method. The
proposed method uses Markov chains to model endmembebiidyiand the spectral
correlation properties present within endmembers. We yselzabilistic graphical model
over multiple Markov chains to capture the mixing effectthaf spectral sensor and employ
sum-product message passing to develop an acceleraisticihtinmixing algorithm. The
computational complexity) (N M?3), of the proposed algorithm is only linear in the num-

ber of bands and depends on the number of endmemildeirs a cubic fashion. As\/



is generally small and fixed (in the 10s), the acceleratedritgn represents a dramatic
speed-up over existing methods. Examples demonstratearairip error rates with two
orders of magnitude reduction in computation time compévekisting statistical unmix-

ing methods.



Contents

1 Chapter 1: Introduction

1.1 Overview of Hyperspectrallmaging . . . . .. ... ... ........
1.1.1 Difference between Color and Spectral sensots. . . . . .. ..
1.2 Applications of Hyperspectral Imaging. . . . . . .. ... ... .. ...
1.3 The Unmixing Problem . . . . . . .. ... ... ... ... .......
1.3.1 Endmember Variability . . . . .. ... ... ... .. 0.
1.4 Contributions and Organization of the Thesis. . . . . . . ... ... ..

Chapter 2: Overview of Hyperspectral Unmixing algorithms

2.1 SpectralMixing. . . . . . .. e e
2.1.1 Thelinear MixingModel. . . .. ... ... ... ........
2.1.2 Nonlinearmixingmodel. . . . . ... ... .. ..........

2.2 Classification of unmixing algorithms . . . . . . . ... ... ... ...

2.3 ClassicalUnmixing. . . . . . . . . . . . e
2.3.1 Geometrical analysis of Hyperspectraldata . . . . .. ... ..
2.3.2 Successive Projection Algorithm. . . . . . .. ... ... .. ..
2.3.3 Simplex Volume Maximization. . . . . ... ... ... .....
2.3.4 Simplex Volume Minimization . . . . . . ... ... ... ....
2.3.5 \Vertex ComponentAnalysis . . . . . ... ... ... ......

2.4 StatisticalUnmixing . . . . . . . . . ... e
2.4.1 Normal CompositionalModel . . . .. ... ... ........
2.4.2 Brute Force Algorithm for Unmixing. . . . . .. ... .. .. ..
2.4.3 Bayesian Estimation of linear mixturesusing NCM . . . . . . .
2.4.4 Sampling piecewise convex unmixing and endmembeacidn .

Chapter 3: Accelerated Unmixing via the Sum-Product Algoithm

3.1 Probabilistic Graphical Model for Unmixing. . . . .. ... ... ....
3.1.1 Markov Chain Model for Endmember Variability. . . . . . . ..
3.1.2 Graphical model forunmixing . . . . .. ... ... .......
3.1.3 Likelihood of abundanceratios. . . . ... ... ... ......

3.2 The Sum-Product Algorithm . . . . . . ... ... .. ... .......
3.2.1 Formulationofmessages. . . . . ... .. .. ... .. ...,



3.3 Sum-productunmixing . . . . . ... 36

3.3.1 Derivation of Unmixing Messages. . . . . .. . ... ... ... 37
3.4 Maximum likelihood estimator for abundanceratios. . . . . . ... .. a7
3.5 Computational complexity. . . . . . .. . .. .. .. ... . . 47
4 Chapter 4: Results and Analysis 50
41 Dataset. . . . . . . . e 50
4.2 Unmixing Performance . . . . . . . . . ... ... .. 0o 51
4.2.1 Abundance Histograms. . . . . . . .. ... ... ... 51
4.2.2 Root Mean Square Errorvs Noiselevel. . . . . ... ... ... 54
4.3 Computation Time. . . . . . . . . . . e e 54
5 Chapter 5: Conclusions 57
6 Appendix: Notation 59
Bibliography 61

Vi



List of Figures

1.1
1.2
1.3
1.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

Sceneundersurveillance. . . . . ... Lo oo 2
Spectral resolution invarioussensors. . . . . . . . .. ... ... 4
Mixing: multiple spectra combined to form a single mixed spectrum. . 7
Endmember variability in two Calcite samples . . . . . . .. ... ... 9
A Factor graph of a Markov chain for a single endmember . . . . . .. 30
Factor graph of multiple interacting markov chains. . . . . . . ... .. 31
Message going from variable node to factornode . . . . . . .. .. .. 34
Message going from factor node to variablenode . . . . . . .. .. .. 36
Clustered Markov chain for multiple endmembers witlspectral bands . 37
Evaluation of variable-to-factor vector message fonxmg . . . . . . . . 38
Evaluation of factor-to-variable vector message fonkmg . . . . . . . . 41
Histogram of abundance estimates for Borax as an endmmembe . . . . 51
Histogram of abundance estimates for Concrete as an emgene. . . . . 52
Histogram of abundance estimates for Soil as an endmembe . . . . . 53
Root mean square error of abundance value estimates. . . . . . . .. 55
Computation time for evaluating abundance likelihoods. . . . . . . .. 56

Vil



Acknowledgment

| would like to take this opportunity to express my sinceratigude to my thesis advisor,
Dr. Josh Ash for trusting my capabilities, encouraging mertdark on research and sup-
porting me throughout my thesis. | would also like to thanktimgsis committee members,
Dr. Arnab Shaw and Dr. Steve Gorman for taking time in reviginy thesis. | am grate-
ful to Wright State University and the Electrical Enginegrotepartment for the continued

financial support throughout my thesis.

viii



To Amma, Nanna, Lakshmi...



Chapter 1: Introduction

1.1 Overview of Hyperspectral Imaging

A hyperspectral sensor captures light that has been raflbeatek from a target material to
a sensor?7]. This is called the reflectance of the material, and it is soeed across differ-
ent wavelengths of light which, collectively, constitubetspectral signature of a material.
Depending on the application, hyperspectral sensors mayneel to different bands in the
electromagnetic spectrum and have different spectral kagnfates. Because reflectance
is a key intrinsic characteristic of materials, hyperspddmagery is often used to identify

target materials in a scene.

The data from a hyperspectral image can be depicted as awitivéyo spatial dimensions
—as in traditional color imagery—and the third dimensiomgehe spectral dimension.
Each pixel on this cube would enclose a certain portion ofléinel being surveyed and
contains reflectance values of various materials that anglseirveyed. Each material ex-
hibits characteristic spectral signature that differsrfrather materials and hence is a key

component in extracting a material from hyperspectral.data

High resolution is a key element in most imaging applicagias this would enhance the
quality of the image thereby throwing light on finer quaktigresent in the scene. Spatial

resolution is key in monochromatic and color images but fipliaations where material

1



detection or its composition are needed then having bgtestsal resolution is required.
Spectral resolution is directly proportional to the numbgsamples of spectral bands in
a band of spectrum. In spatial domain, challenge is with ihe af the pixel but in spec-
tral domain the challenge is with spectral variability. 8pal variability is the change of
spectral signature among different samples of the samerialatAccounting for spectral
variability or popularly called endmember variability daa difficult but for reliable detec-
tion of materials it has to be taken into account. More detilout endmember variability

are in Sectiorl.3.1

An illustration of a hyperspectral scene under surveikaiscshown below:
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Figure 1.1: Scene under surveillance

In the above image the highlighted pixel in red block cossedtdifferent materials

like a waterbody, vegetation and concrete. These matanat®ntext of hyperspectral



imaging are referred as endmembers. Data in a pixel encpsgisl information at various

wavelengths along the spectrum thus creating the 3-D sireict

1.1.1 Difference between Color, Multispectral, and Hyperspectral @m-

eras

A color camera captures light across 3 wavelengths of therelmagnetic spectrum: red,
green and blue. Traditional color cameras have been dekitpreeway to capture infor-
mation similar to the human eye, including only the visibéd from 380 nm to 700 nm.
In contrast, an imaging spectrometer has the capabilityfeying a scene in the spatial
and spectral domains, but captures reflectance over mafygpectral bands—potentially

outside the visible region.

As illustrated in Figurel.2, there are different classes of imaging spectrometers), @ac
fined by the number of spectral bands captured by the sensanultispectral imaging,
the number of spectral bands being sampled is approximafel®0. However, continuous
technological improvements have led to ever-increasiegtsal resolution of remote spec-
troscopy methods, leading to hyperspectral cameras tipatiresl 00's of spectral bands.
Some recently developed sensors that capt00@’s of spectral bands are referred to as
ultraspectral sensors. Landsat-8 is one of the populanspalttral sensor while Hyper-
ion & AVIRIS are well-known hyperspectral sensors. The iasiag spectral resolution of
sensing technology is outpacing the processing capasildf current sensor exploitation
algorithms [7], and as described in Sectidrd, addressing this issue is the primary focus
of this thesis. Additionally, and for convenience, we geatigirefer to N-band imagery as

hyperspectral imagery (HSI), regardless of the particolanber of bandgv.
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Figure 1.2: Spectral resolution in various sensors

1.2 Applications of Hyperspectral Imaging

Traditional uses of hyperspectral were primarily focusad@mote sensing applications
like mining for mineral ores, but this has changed in themépast. Hyperspectral imaging
is currently being used in a wide range of domains, and herkigidight a few example

applications:

e Mineralogy:
One of the first applications of hyperspectral imaging wasineralogy because of
its inherit traits. Different minerals in there crude forme adentified through their

unique spectral signatured.]]

e Surveillance
It has been used to spy on enemy encampments and detectltgpbalbadvance-

ments being made in enemy countries using drones and wateligery.§]

e Agriculture :

This is a recent development where crop health is monitoneidvariations of crop



health in different geographical locations are recorde&l khs also been used to

control pests in agricultural field&()

Ophthalmology:
Hyperspectral imaging has been used to detect the levelsyglea in the retina to

monitor eye visiong3].

Astronomy & space surveillance

Similar to mineralogy, HSI characteristics fit well for astomy where detection of
materials and their composition is necessary to understhadicteristics of distant
objects. As spectral signatures are unique for every nahtétSl is a powerful tool

to detect then[2)].

Food and pharmaceutical processing
HSI is used to identify any faults, defects, and foreign bedgresent in food mate-
rials which might not be detected by laser-based methodgbrdpatial-resolution

camerasl7].

Environment:
Hyperspectral imaging is being used to monitor the comjuositf the atmosphere
and detect changes in its composition. For example, it id tesenonitor for harmful

substances leaking in to the atmosphere from chemical inesi§).

While the list of HSI applications is diverse, one common thaémthe use of measured

spectra to identify particular materials and their abuéarwithin imagery. This task is

referred to asinmixing and is desribed in the following section.

1.3 The Unmixing Problem

Because hyperspectral sensors are often deployed far aataytfre area that they are

imaging, the ground sample distance (GSD) is generallyelakFgpr example, the airborne
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AVIRIS sensor has a ground spatial resolutiorz@h x 20m [24]. With low spatial resolu-
tion, i.e. “large pixels”, there is a large chance that npldtiground materials contribute to
the measured spectrum for each image pixel. The linear ghixindel (further described
in Sec.2.1.]) describes how individual material spectra, referred tengsnembers, “mix”

to form a measured spectrum

M
y=  Buz™. (1.2)
m=1

Herey is the observed hyperspectral data for a given pixel. It i8anl vector containing
the reflectance values acrodsdifferent wavelengths. The variabie™ represents the
spectral signature of the endmember, and < j3,, < 1 is the fractional composition
of them!™ endmember in the pixel. The term coined for the fractionahgosition3,, of
an endmember in spectral imaging is ti®indance ratio, and) 5,, = 1. Although the
sensor measures mixed datawe are generally interested in?he knowing the constituent
materials in the scene. Consequentlynixing is the process of determining the endmem-
ber spectralx(™ }and estimating their corresponding abundangés} from measured
data—thus unwinding the mixing proce3%].

Anillustration of mixing and unmixing is shown in Figute3. The left plot illustrates
4 different endmember spectral signatures, and the rightiljlstrates a mixed linear com-
bination of those signatures. The unmixing process attetoptecreate the four endmem-
bers on the left, and their abundanges, }, from the mixed measurements available in the

image.

1.3.1 Endmember Variability

While classical unmixing approaches typically treat endiners as constant quantities,
more recent approaches accomodate natural variabilitym@ndmembers. For example,
the spectrum of grass may vary depending on the speciesss goasidered and its health

state, e.g., dry grass versus healthy green-colored ghassgher example, taken from the
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Figure 1.3:Mixing: multiple endmember spectra (left) are combined to fornmglsimixed
spectrum (right). Unmixing: from a mixed spectrum, unmixing attempts to isolate the
original endmember spectra and their abundances.



ASTER spectral libraryd], is depicted in Figurd..4. Here, natural variations in a Calcite
compound contribute to variability in the endmember sgeciithough both samples are
of calcite compounds, we observe that they have differdteéatance signatures. Conse-
guently, understanding and modeling endmember variglslitmportant for unmixing and

material identification algorithms. As noted ifj[endmember variability may be modeled

in 2 ways:
1. Endmembers as sets.
2. Endmembers as statistical distribution.

In the first method, a set of viable endmembers for each na&tdass is considered. The
second method considers endmembers as random vectoribdddxyra probability density
functionp(z™) for each material class.. The statistical approach is more common and
consequently has led to a number of recent statistical ungadgorithms that account for

endmember variability.

1.4 Contributions and Organization of the Thesis

Continuous improvement in sensor technology is contrilgutonever-increasing spectral
sampling rates for imaging spectrometers. Unfortunatdbyprithmic advances have not
kept pace with technology, and statistical unmixing ha®bexcomputationally intractable
for recent hyperspectral and ultraspectral sensors. ticpkar, for N-band data, current
statistical unmixing algorithms with realistic inter-twhoorrelation models have a compu-
tational complexity ofO(N3). In this thesis, we develop and evaluate a novel statistical

unmixing algorithm with complexityD (V).

In Chapter 2, a brief overview of different types of mixing netelis given along with

a summary of different classical unmixing algorithms aradistical unmixing algorithms.
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tra. Source: ASTER spectral librarg][



In Chapter 3, we present our endmember variability modeldaseMarkov chains and
our accompanying unmixing algorithm that achieves lineanglexity through the use of
sum-product message passing. Chapter 4 compares resalitssabby traditional unmix-
ing and our proposed algorithm using data from the ASTERtspldibrary. We conclude
in Chapter 5 with a summary of our algorithm’s performance smggestions for future

research. Notation is summarized in the Append@jx (
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Chapter 2: Overview of Hyperspectral

Unmixing algorithms

Over the past couple of decades there have been differezg tfspectral unmixing algo-
rithms proposed, each based on different criteria. As dsedi above, spectral unmixing
involves estimating the spectral signatures of endmendettheir abundance values in a
pixel. Endmember variability, measurement noise, modedefects, environmental condi-
tions and sensor inaccuracies make unmixing a challengsig tUnmixing, in plain terms,
is the unwinding of the interaction of incident light withdividual endmembers. In this
Chapter, we review existing unmixing algorithms; howevest it is necessary to consider

the forward model, i.e. spectral mixing.

2.1 Spectral Mixing

As light is reflected byM materials in a scene, the spectral measurement at each pixel
can be modeled as mixture of the endmember speX¥tra= [z, ... )] and their
abundance ratio8 = [, ..., 8u]’. There are two types of mixing models: the Linear

Mixing Model and non-linear mixing model3().

11



2.1.1 The Linear Mixing Model

The linear mixing model (LMM) is an approximate model be@aokthe primary assump-
tion that, in a hyperspectral image the number of multipkgtecings of light among end-
members is negligible and may be neglected, i.e., on thengrthere are not any conditions
that cause light to be reflected from multiple endmemberslédauch conditions, the frac-
tional abundances of the materials correspond to the catrgroef the measured spectra,
which can be modeled as a linear combination of the endmenjbgr This is referred
as linear mixing model. This means that no endmember cantaig impurity from sur-
rounding endmembers which is unlikely in most of the datalbdM is perhaps the most
widely used and accepted model for developing algorithnsekee the unmixing problem.

The functional form of the LMM was given irl(1) and repeated here for completeness:
M
yzZﬂma}(m)—Fw:Xﬁ—kfw. (2.1)
m=1
Here,y is the N x 1 observed pixel measurement resulting framendmembersg (™

is the spectral signature of endmembey 3, is the abundance ratio corresponding to

endmembern, andw is background or instrument noise. The constraint$/@n} are

0<Bn<1 Vme{l,.. . M} (2.2)
M
m=1

These constraints signify that all the elements in the adooe vector should be non-

negative, less than one, and should sum up to one—referthas$o-one constraint.

12



2.1.2 Nonlinear mixing model

The non-linear mixing model is based on the ideology thatemnt light reflectanultiple
times with in-scene materials, thus generating a speadtyahsire which has multiple scat-
terings involving different endmembers. The model is marmplex than LMM and is
potentially more accurate due to larger degrees of freeddma.general non-linear model

may be expressed as

y=[f(X,8)+w, (2.4)

where f is a non-linear function, an& and 3 now potentially contain higher-order in-
teraction elements. For example, a second order model waeged by Nascimento and
Bioucas-Dias 13] where heterogeneous endmembers are used to effect rean-timxing
and new abundance ratios are assigned for such heterogegredmembers. The model is
similar to LMM, but has additional terms where each adddiderm represents the second
degree interactions between two endmembers. A two-mhex@nple between soil and

trees takes the fornip]

Yy = [w(soil)’ m(tree)’ m(soil,tree)] [/Bsoila /Btreea ﬁsoil,tree]T + w. (25)

Most unmixing literature focuses on the LMM, and we adoptlth®V for our work.

2.2 Classification of unmixing algorithms

There are different classifications for spectral unmixilggpathms. One of the well-known
taxonomies of these algorithms is given by Bioucas-D&sahd includes the following
unmixing algorithm categories: Geometrical unmixing, tiStecal unmixing, Sparse re-
gression unmixing, Signal subspace unmixing, and Spatisiextual unmixing. Here, we

adopt a broader parsing of existing algorithms into two megiegories:

13



1. Classical unmixing algorithms
2. Statistical unmixing algorithms

In the classical approaches, mixing of endmember spedtmviothe LMM (2.1) and the
endmembers are treated as deterministic unknown quantiti¢he statistical approaches,
the endmembers are treated as random quantities, typfodfiying the Normal Compo-

sition Model (NCM) B].

2.3 Classical Unmixing

The basic assumption in most of the classical unmixing &lgos is that, the spectral
information can be modeled using LMM. Apart from LMM anotfessumption most of
the classical unmixing algorithm make is the pure pixel agsion. In pure pixel based
algorithms, the assumption is that, in the observed pixelsueements there would be at
least one pixel measurement that would contain only a siegtemember. The definition
of a pure pixel is

y =™, (2.6)

The definition of pure pixel defined above signifies that theepbed pixel spectrurg is
equal to a single endmember’s spectral signaitife and there would bé/ such distinct
pure pixels, each containing a unique endmember spectgariiims attempt to identify
these pure pixels from the data to achieve unmixing. Someeoptominent algorithms in
this category are the Successive Projection Algorithm (SFartex Component Analysis

(VCA), N-FINDR and Successive Volume Maximization algonit.

14



2.3.1 Geometrical analysis of Hyperspectral data

As most classical unmixing algorithms discussed in this @ragse convex sets analysis
on hyperspectral data, a brief introduction about some efatbsumptions and terminol-
ogy is discussed in this section. Application of convex getynto hyperspectral unmix-
ing was introduced by Craid]. The definition of a convex hull for endmember spectra

(@, ... xM)is:

M M
confzV, ... M| = |y = Z O™ |6 > 0, Z O =1 (2.7)
m=1 m=1

The above equation can be traced back to the noiseless cdselahear Mixing Model,
Eqg.2.1D [4]. The inference that can be drawn is that the observed da@amvex set of
endmember spectra,igin] € conz™, ... ™| vn = 1,..., L (L is the number of
pixels in the data and “conv” is the convex hull). Unmixingsbd on convex geometry is
based on estimating a set of vectors for endmember speatfaiisat the estimated simplex

of conviz(V, ..., £(M)] gives the closest fit to the true endmembers simplex formettidoy
convex conje™ ... ()], An affine transformation on each endmember spectral vector
x(™) is chosen as the estimated convex dafV, . . ., £(*)]. This would mean the presence

of an affine transformation on the observed pixel spegtré given as:

y[n] = Cz[n] +w (2.8)

HereC € RV*(M-1_ The transformed measuremerit] is formulated as:

z[n] = CY(y[n] — w) (2.9)

15



where' denotes the Moore-Penrose pseudoinverse. Applying theeabference to Linear

Mixing Model, z[n| can be written also as:

M
z2=) bufn (2.10)
m=1

Hereb,, = C'(x,, — w) € RM~1 and the simplexB is defined on the convex hull of

conviby, ..., byl.

2.3.2 Successive Projection Algorithm

In SPA, the estimate:(™ of the spectral signature™ is obtained using the orthogonal
projection P::corresponding ta:(™~1. SPA assumes the pure pixel criteria and the ob-
jective of the algorithm is finding pure pixels for every erember in the image. Here

l; @ = 1,..., M) is used to index the pixels that are pure. The first endmemdehe
identified as

&) = y[iy], (2.11)

wherel; is obtained using the equation

hh=arg max [jy[n]l[3. (2.12)
HereL is the number of pixels in the image. The estimated endmepsgsatra is assumed
to be a perfect identification, i#™ = x(™. Under this condition the other endmem-
bers are identified using a geometric strategy termed asmgulNulling is the standard
geometric operation of projecting an orthogonal compoménibe current vector. Using
the estimated endmember vecf™-1 = [0 .. &(™1], the orthogonal projection
of X(m—1) is evaluated to estimate the next pure pixel index in the.dBlés process is

repeatedly done to identify all the pure pixel indices frdra spectral data that correspond

16



to individual endmember spectra. The algorithm is sumnadrizelow BO|:

1: P+ =1

2:form=1,..M]

77777

~

4: gm = Yl
1= (P a) Pl
[[Patm][3)

5 PL::(

2.3.3 Simplex Volume Maximization

In this section we discuss about two algorithms, N-FINDR 8c&ssive Volume Maxi-
mization, that are based on the same principle: SimplexwelMMaximization . These
algorithms assume LMM and pure pixel model to search forirdispure pixels in the
spectral data. A key point of these algorithms is that thelgamase of the fact that a pixel
spectrum can be represented geometrically as a simplexhahthe volume of such sim-
plex is to be maximized by distinct pure pixels as verticethef N-dimensional simplex.

The objective function described iB8(] is

max vol(B) s.t. by, econv(z[l],... z[L]],m=1,...M (2.13)
In the above equation “vol” is the volume of the simplBx The values ofB, b,, & z[n|

are obtained from the Secti@3.1 Below are some algorithms that make use of simplex

volume maximization.
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N-FINDR

The N-FINDR algorithm is based on the geometric nature otspkedata. The objective
function is a simplex containing spectra of observed pizeld the optimization is about
maximizing the volume enclosed by this simplex such thatréices of the simplex are
distinct pure pixels which would represent individual eranioer spectra. The algorithm
starts with random selection of observed pixel data asoestof thed/ — 1 dimension
simplex. The initial volume of the simplex formed using rand pixels picked as pure
pixels is calculated. On the next iteration, each pixel anuértex is replaced by another
pixel and the volume of the simplex is recalculated. If théuxwze increases then this
change remains or else this is tested on other pixels. Trative process is continued till
the volume of the simplex converges to a maximum value. Oacke syaximum is reached
then the vertices of the simplex are spectral signaturesdifidual endmembers. If there
are no pure pixels for an endmember then the algorithm enéstiupating a mixed pixel
spectra as endmember spectra for that endmember. Sometiloeal maxima could be
encountered and the algorithm might stop prematurely bdfoding the closet match on
endmember without pure pixel. To avoid such premature ap#tion, the algorithm is run
several times with different initialization of the vertgthat form the simplex2g].

The volume determination starts with augmenting the endpeeswith a row of ones
E = (2.14)

The volume of the simplex is determined using the formula

V(E) = ! !abs(|E|), (2.15)

(M —1)

18



where M — 1 is the number of dimensions occupied by the data. After endoee de-
termination & spectra estimation is done, the fractionairetances of the corresponding
endmembers are evaluated. This procedure is done usirigstpaares inversion or non-

negative constrained inversion. The soluti@d][follows as

B=(ETE)'E"y. (2.16)

This is done iteratively on each pixel to estimate endmerspectra and their abundance

ratios.

Successive Volume Maximization

This algorithm is based on the same objective as discusgdeRNDR, where endmem-
ber uncertainties are found by maximizing the volume of thgogex enclosed by observed
spectral data. This algorithri@29] uses a similar idea as SPA, where the solution to estimat-
ing endmember specte™ is given by Eq.2.12. The algorithm starts with dimension

reduction on the pixel spectra and then calculating a m#tras:

F:<b1 by ... bM> (2.17)

fn = o , (2.18)
1

z= |~ (2.19)
1

The algorithm projects orthogonal projections from estadaendmember vector succes-
sively every time to find each endmember spectra (similaP#)®ut instead of this oper-

ation being done directly oX , here it is done on a matrix with a vector of ones augmented
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to X (Eq.(2.17). From [29]

2
2

M
|det(F)[* = ] || Pévm_1fm (2.20)
m=1
Maximizing the volume of the simplex EQ.(L3 is same as maximizingd” Eq.@2.17)
[29][30]. Successive volume maximization, (SVMAX) uses the susigesstructure of
Eq.2.20 to generate an estimation of endmember spectra recysielendmembeb,),
is generated by the knowledge of its previous estimates., b,,_;. The solution for the
endmember spectral signature is

~

by, = z[lm], (2.21)

~

by = arg max, [P, 2] (2.22)

A detailed description and complexity assessment of therifigm may be found ing9).

2.3.4 Simplex Volume Minimization

Simplex volume minimization is an algorithm that finds a siexpwith the least volume

enclosing all the pixel measurements. This is an improvesioe compared to the results
obtained using SVMAX or N-FINDR as it performs better evethére are not any pure
pixels in the measured data, thus giving more flexibilitytte model to fit real data. The

objective function varies from SVMAX as shown:
mBin vol(B) s.t.z[n] econVby, ..., by] (2.23)

This objective function does not have a closed form schekeesliccessive volume max-

imization and has to be solved empirically, which makes th#n@zation more complex
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to handle. Because of the constraints on the abundance y#liges a non-convex opti-
mization. Additional details describing the optimizatimutine and of the algorithm may

be found in BOJ[31].

2.3.5 Vertex Component Analysis

Vertex component analysis (VCA) was proposed to be an impnew over other exist-
ing algorithms in the classical unmixing category by BioubBaas and NascimentdLp).
The VCA sets out in the determination of endmember specigabsires using the pixel
spectrum obtained through a hyperspectral sensor. VCA asstira pixel spectra can be
modeled by LMM and assumes pure pixel model. VCA makes usemfduts, first is that
the endmember space can be represented as a simplex whbsesvepresent endmem-
bers present in the observed data and second is that an affirsfarmation applied to a
simplex results in a simplex. The algorithm starts from thferience that the abundance
vector3 can be represented as a simplex, then the geometry needgudsent the spectral
signatures: over N bands of spectrum is also a simplex representéd and the observed
pixel spectrum is represented as a convex cohe;The orthogonal projection af, on to

a hyperplane results in a simplex that has vertices cornepg to S, i.e S,. OnceS, is
determined, then the VCA algorithm functions similar to SPRAeve it iteratively projects
data orthogonally to the subspace spanned by the endmeaitsady determined, and this

iteration continues until all the endmembers are searabred f

The VCA algorithm has simpler computational complexity hessaof usage of dimension
reduction techniques such as Principle Component AnaliPZXA\j, where the number of
spectral bands would be reduced fravmto P whereP < N. For this reason, VCA has
better processing and computational speed and is conditiedge one of the best algo-

rithms in unsupervised hyperspectral unmixing.
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2.4 Statistical Unmixing

2.4.1 Normal Compositional Model

The Normal Composition model (NCM) is a popular mixing modetduese it addresses
both endmember variability and sub-pixel mixing. The NCM lgggpa normal distribution

on endmember reflectances to model endmember variabilijpgmifferent samples of an
endmember along different wavelengths. Mathematicdily,dbservation model follows

the LMM

M
Y= Bnz™ +w, (2.24)
m=1

where the elements ab are additive white Gaussian noise with variamge However,

now each endmember™ is assumed to have arpriori Gaussian distribution
™ ~ N (p™, Cm) (2.25)

M
The constraints on the abundanggsare the same as the LMMy | 5, = 1,0 < 3, < 1.
m=1

The above set of equations signify that® is a random vector representing the normal dis-

tribution of an endmember with a mean vectop™ & covariance matrixC™.

Most of the statistical unmixing algorithms use the NCM, anoceed by estimating the
NCM parameters. These are estimated by using stochastictatipa maximization al-
gorithm. For further explanation on the derivation of theseameters refer2p]. It can
also be inferred from the NCM that the pixel measurement wiuare also distributed
normally

y ~ N(py, Cy) (2.26)
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with meanu, and covariance matrig’,, given as

M
py =D Bp™ (2.27)
m=1
M
C,=> B2C"™ + 521y (2.28)
m=1

Prior knowledge of endmember reflectances are assumed t@itebde through a spectral

library.

2.4.2 Brute Force Algorithm for Unmixing

One of the most direct approaches to statistical unmixirtg spply the maximum like-
lihood principle to the NCM. As mentioned in the previous g&ttby using a spectral
database the megr™ and covarianc€ ™ of endmembers may be determined, and the
resulting Gaussian parameters of the pixel measurementedes in 2.27) and @.28.

The likelihoodp(y; 3) of the abundance ratigs then has the form

ply: B) = (2m) 2 (det(Cy(8)) ™ exp 5 (51, (8))C; (B) w1, (8)], (229)

where we now writeu, (3) andC,(3) to explicitly indicate the dependence gh For a

given pixel measuremenmt, we may compute the maximum likelihood abundances as

A

B = arg mgxp(y; B). (2.30)
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However, maximizing the likelihood is same as minimizing tregative of log-likelihood,

hence we minimize the negative log-likelihood to estimhgedbundance vectgt,

B = arg min{—Inp(y; B)}, (2.31)
with

Inp(y: 8) = o In(2r) ~ L det(1n Gy (8)) ~ 3 (y— 11y (B)) C; (B) 11, (8). (2.32)

This is a straightforward method for unmixing endmembeas supports arbitrary covari-
ance structures in the NCM model, however when the specBaluion is increased, the
computational time required to unmix increases dramdgicahspecting 2.32, we see
that this is due to the need to recompute the determinantraedsie ofC,(3) for each
candidate argument of the objective function. If the measurementontainsN spectral

bands, the complexity of each of these operatior3(i&™).

2.4.3 Bayesian Estimation of linear mixtures using NCM

The hierarchical Bayesian model proposed by Ecl2& jises the NCM model to treat
pixel measurements as linear combination of endmembelsemtimembers represented
as normal distributions. This model doesn't use a spedbdrly to estimate endmember
means and covariances, instead uses one of the classicaingadgorithms like VCA or
NFINDR to extract endmembers from observed spectral measnts and estimates cor-
responding mean vectors for each endmember. The covanaate for an endmember

is assumed to be proportional to an identity matrix

C'™ =of Iy (2.33)



The endmember varianeﬁm) is assigned a conjugate inverse gamma distribution with
suitable priors for the hyper-parameters of the conjugaterse gamma distribution. The
Bayesian approach is used to estimate abundance valuesoéprixers. The likelihood of

the observed pixa} is

1 onp[ ¥ = (B
2o, B LT a0ke(g) )

FWIB,0m) = (2.34)

The value ofu,(3) is same as shown i2(27) and¢(3) = % B(Qm). As the empirical
evaluation of posterior is too complex to derive a MMSE ori/llé\s:ﬁmate, the posterior is
evaluated by EM algorithm but to limit the shortcomings @& BEM algorithm Markov chain
Monte Carlo (MCMC) simulations are done to iteratively genesstmples of the joint pos-
terior of the abundances and endmember variance. A unifesmiuition is chosen as the
prior for abundance values. The sampling algorithm useddsMetropolis-within-Gibbs
sampler that would generate samples of the posterior fumctAn improvement is also
made to this model where the endmember covariance is a dibgutrix,i.e a different

variance along the diagonal (This is discussed in Se&itn

The drawback of this model is that the endmember covariayeportional to an identity
matrix and does not account for spectral dependencies batwavelengths. Apart from
this, the model uses Monte Carlo simulations to derive taamtn values which contributes

to slow runtime.

2.4.4 Sampling piecewise convex unmixing and endmember extrac-
tion

S-PCUE was proposed by Zare et @2][and the algorithm searches for sets of endmem-

bers in non-convex data sets and uses a distribution on endere to model endmember
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variability. Through several sets of endmember distrimgia piecewise convex model is
built and the algorithm performs estimation of endmembeareuainties. After extraction
of endmembers, the mean vector is evaluated for each endenemiihis method the co-

variance of the endmember is assumed to be proportionalitteatity matrix.

The S-PCUE algorithm uses a Metropolis-within-Gibbs samfwedivide the observed
non-convex data into convex sets, sample the convex setsiaés the endmember dis-
tributions in each convex set, i.e its mean vector and egtsneorresponding abundance
values for each endmember. As this algorithm uses a samappgoach the algorithm
is iterated approximately 50000 times to achieve convaergeithe results from S-PCUE
were found to be better than VCA on simulated data and AVIRISaimdPines data-set.
The drawback of this approach is that the endmember cowariamatrix is modeled to be
fixed and proportional to an identity matrix. Another drawkaf this algorithm is that it

relies on Monte Carlo simulations for estimation which cilmite to slow unmixing times.
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Chapter 3: Accelerated Unmixing via

the Sum-Product Algorithm

3.1 Probabilistic Graphical Model for Unmixing

The performance of statistical unmixing algorithms is goeel by the assumptions made
in their underlying models. However, to combat computaiaomplexity, most exist-
ing algorithms assume that tlaepriori distribution of endmember reflectance values are
independent at different wavelengths. For example, th€B#algorithm B2] assumes
the NCM for each endmembaer™, p(z™) ~ N (u(™, C(™); but, this model model

constraints the covariance matrix to be proportional tod@miity matrix
Ccm =ol I (3.1)

Such a covariance matrix does not model the correlationsdsat wavelengths and as-

sumes same varianm%m) for all the samples. Similarly, the hierarchical Bayesiardeio
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proposed by Eche2p] uses the NCM with a diagonal covariance matrix

(3.2)

Although this captures different reflectance variancesrantbe bands, correlation proper-
ties are still not modeled although correlated values angmevalent in actual endmember
spectra. For example, the calcite spectra depicted inlHAghow significant smoothness
over many of the bands, suggesting strong correlation ptiepdbetween the reflectances
of adjacent wavelengths.

Although the brute force algorithm presented in S2d.2does support arbitrary co-
variance structures, the associated computational caityple intractable for large spec-
tral sampling rates. Therefore, we seek an alternative fribdeis both computationally
tractable and that captures the correlation propertiendfiembers. As described in the

following section, we propose a Gaussian Markov chain fis parpose.

3.1.1 Markov Chain Model for Endmember Variability

In the past, probabilistic graphical models like the GaussKdv random fields (GMRF)
have been used on multispectral and hyperspectral image®del spatial and spectral
dependencies for an endmemb2§][ An adaptation of these concepts is used where a
Markov chain is used in the spectral dimension to model tlterember variability. End-
member reflectances at each wavelength are modeled as rarad@bles in a Markov
chain and the conditional transition probabilities froneaandom variable to another in-
duce the desired correlation properties. In our model weauBest order Markov chain

such that the conditional probability of the reflectange; at wavelength\;,; only de-
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pends only on the previous reflectange

P($¢+1|371, T2y o 3 Tiy Tijg2y .- 733N) = P<$i+1|$i)a (3.3)

and with the probability of the entire endmember/chain gias

N-1

H P xz+l|$z (34)

=1

Adopting a first-ordefGaussian model, we have
p(Tis|zi) = N (i uz; + pa, 07, (3.5)

with the following designations

e z;: random variable to representing the unknown reflectantieeath element of an

endmember, corresponding to a wavelength

p(zi41]2;): the conditional (transitional) probability betweepandz; 4

«;: the correlation factor between andx;

;- mean of transition noise

o?: variance of transition noise

p(z1): Gaussian prior probability with mean and variance?

From above it is evident that other parameters like the Gdrom factora; and noise pa-
rametersu;, o7 and parameters of prior probablll(y) T ) 1o, 02 are needed to form the
probability distributiorp(m). The totality of these parameters, {,, 02},

{av, pi, o2 ! across the chain, define the variability of the associatetnember and

are assumed to have been estimated offline using a spedinbbda, such as the ASTER
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spectral library.

As illustrated in Fig.3.1, the Markov chain may be graphically depicted usintactor
graph, where circles represent random variables (in this caseawmik reflectances of an
endmember) and squares represent factors (conditionadpildies in this case) in a joint
PDF over all of the variables considered. Edges in the grapinect factors to the vari-
ables that they depend on. For example, for fa¢tove havef; = p(x;.1|z;) with edges

connecting tar; andx;, 1.

Figure 3.1: A Factor graph depicition of a Markov chain rejerging the random variability
of a single endmember

3.1.2 Graphical model for unmixing

In this section we develop a graphical model representdborspectral measurements
with endmember variability. This model will be used for uming and is formed as a
combination of the linear mixing model and the Markov chamsoduced above.

A typical hyperspectral pixel would generally contain mtivan a single endmember.
As such, we employ one Markov chain for each endmember. tetaeeM/ endmembers,
then we useV/ Markov chains to model all the endmembers in a pixel. We smppht
known information like the correlation facter and pixel observationg into these chains.
In Fig. 3.2, we shown an example of this model for the cdge= 3. Here the variable
nodeml(.m) represents the reflectance at wavelendtr endmembem. fi(m) is the factor

node between spectral banfisi + 1} for endmembern, containing the factor function

p(x{7)|2™) as shown in Figur@.2 o!™ is the correlation factor at factor nodé™,
modeling the spectral correlation between spectral bgnds+ 1} with ug"“ and a§m>2

being the mean and variance of transition noise at factoe rfé’a). The factorg;, =
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(i [xgl), . ,ng)},B) represents the distribution of the measurement at wavisieng
We follow the linear mixing model and, as in the NCI€], assume that measurement

noise is Gaussian, i.e.

M
=" Bual™ + e (3.6)
m=1

wheree; represents additive white Gaussian noise with precigioAs such, we have

o = p(ys| 17,2, B) = plyili, B) = N(ys; B i, p.) (3.7)
for measurement factaer;,, computed for each wavelength index 1,..., N.
(m) | fm m | mlgm) ()
p(xn 1) = NGy "X+ 1 01’ (m))

p(yi|x;B) = Nly;B'xi,pe)

Figure 3.2: A factor graph depiction of the spectral measerg system consists of mul-
tiple interacting Markov chains, one for each endmembér= 3 endmembers are shown
in this example.
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3.1.3 Likelihood of abundance ratios

The likelihood of the measurement model, depicted in Big, depends on the priors
p(z™), the conditional probabilitieﬁ(ngl)|x§.m)), andp(y;|z;; B), i.e the observed pixel
measurements. We formulate the general likelihood for algiaving M/ endmembers

with N spectral bands in it. This is shown below:

M N—-1 N
p(y, X;8) = (H p(2i™) p(xmwﬁ’"))) : (Hp<yi|mz-; m) (3.8)
m=1 =1 =1
whereX = {x;,...,xx} includes allN x M unknown reflectances. The above equation
is a joint likelihood on reflectance and abundance valuesukslgorithm is a supervised
learning algorithm we estimate only the abundance valuaspixel and there by detect if
a particular endmember is present or not (i.8,if > 0, thenm'* endmember is present in
the pixel). Marginalization of the E®(8) is done to convert the joint likelihood equation

to a likelihood equation on abundance values. This showmbel

py: B) = / ply: X, B) dX (3.9)

N-1

= / <H play™) Hp(xETf!w§m’)> - (Hp(yi\a:i;ﬁ)> iX,  (3.10)

= i=1

While the above integral appears intractable (of $Vze M), we show below that efficient

integration strategies are available using the sum-prtaalgorithm.

3.2 The Sum-Product Algorithm

Contemporary applications often require large models cermpystems involving many
hidden variables and uncertain parameters. One exampleather forecasting, which

typically uses prior information of previous weather higtaemporal dependencies and
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other information to predict the weather conditions. Thgpe of problems are frequently
tackled using probabilistic graphical models and one ofwied-known algorithms that
fuses information within the graphical models is the sumdpict algorithm 10] [16] [18].
The sum-product algorithm computes inferences on grapmoéels like Markov random
fields and Bayesian networks by passing messages along edtes graph. These in-
ferences can be discreet or continuous in nature. Gengitadlysum-product algorithm is
used because of its efficiency and exactness in finding thginaprobability of random
variables. Messages are passed both in forward and backiivaation and the individual
marginals are calculated by accumulating the forward am#ward messages coming in
to a variable node. In our algorithm, we make use of only fedagoing messages com-
puted by sum-product algorithm. All the forward going megsaare multiplied with local
functions of variable and factor nodes. The final messagheaend of the chain is the
likelihood of the chain. The sum-product algorithm is geigrknown to be an exact al-

gorithm on tree-structure graphs, but is only approximateyfaphs with cycles.

Below we provide a general description of the sum-producoréttym, describing how
messages are computed, updated, and fused. Ii3Sawe specify these general rules to

the unmixing problem.

3.2.1 Formulation of messages

Because there are two types of nodes in a factor graph, thepsoaact algorithm consists

of two types of messages:
1. Messages from variable nodes to factor nodes
2. Messages from factor nodes to variable nodes

The messages going from a factor node to a variable node presemted as:;, and

messages from variable node to factor node are represesteda Factor nodes are
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represented ag and variable nodes are represented.as

Message from variable node to factor node:

Variable nodes fuse the information of their local functigith incoming messages from
neighboring factor nodes. In this presentation, we assuneaal function for the variable

nodes. Using message passing update rules, the outputgaesfsa variable node is the
product of the input messages from all neighboring factatesoexcept the destination

factor [9] [16]

mar(r) =[] mpal2), (3.11)

f'eN@)\f

whereN (z) \ f denotes the set of all neighboring factors of variahlexceptf. For the

example graph in FigB.3, the outgoing message to factfyris

My, f, (mt) = Mfix, (mt) mkat(xt) (312)
m X
mﬁxt(}(t) thgl: t:'
EEE— L
K o B
mfgxt(xt)
mka‘t (xt)

Figure 3.3: Message going from variable node to factor node
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Message from factor node to variable node:

The second type of message originates from factor nodesasediniable nodes as its des-
tination. Factor-to-variable messages transform incamgnmessages about neighboring
variables into outgoing information describing the destion node. The outgoing mes-

sage from factoyf to variablex takes the form16] [9]

() = / F(X) TT mersa) dX-, (3.13)
X- r'eX—
where X = N(f) denotes the set of neighboring variablesfah the factor graph, and

X~ = X \ z excludes the destination variable from this set.

A three-variable example is shown in Fig.4. The factor nodef, here is a compatibil-
ity function governing the relation betwe¢n;,, z,, z,} and has its own local functiofy;)
defined by some prior knowledge abdut, z,, =, }. The output message is the product of
non-destination input messages from variable nodes neigitpfactor f,. As the product
of all the messages is a multivariate function, integratsoapplied on all variables other
thanz,. In this case integration is done epandz,, that is, the multivariate function is

marginalized such that the output function only depends,on

Moy (xg) = / My, f, (1) qufs(xq) fs(e, xmxg) dz; dz, (3.14)

Marginalization:

Lastly, the factor-to-variable messages can be used to et@mparginal distributions over
the graph. For an a cyclic graph, if the outgoing messages hegn computed for each

node in the network in a round-robin fashion for at leasimes, wherel is the diameter
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mxtfs(xt) my EXg(xg)

mngs(xg)

qu s(xq)

Figure 3.4: Message going from factor node to variable node

of the graph, then the marginal distribution of a variablmay be exactly computed as
p(x) =[] mpl@. (3.15)

In the unmixing problem, from3.8), we havep(y, X; 3) and wish to marginalize all of
the reflectances, as i83.00. Applying the sum-product algorithm, we may uselfH

to compute the marginal distribution over all but reflecemnat theN** wavelength, i.e
xy. This yieldsp(y, zy; 8) from which the remaining integral ovety yields the desired

marginalized likelihoog(y; 3).

3.3 Sum-product unmixing

Figure3.2illustrates the factor graph governing Markov chain endienvariability and
linear mixing for A endmembers and spectral bands. The drawback of this model is that
it is loopy, and as discussed earlier, the sum-product éifigoron graphs is only exact for
graphs without cycles. To address this issue, we retune odehand combine th&/ scalar

Markov chains into a single vector-valued Markov chain, i@ in Figure3.5. This is
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generally termed as clustering of nodes which is done asdlgrio eliminate any cycles
present in the graph and this does not affect the computdtmymplexity to calculate
messageslf]. The sum-product algorithm is now applied to the refornedagraphical
model where the messages are now multivariate functionshdrollowing section, we
derive the messages required for efficient unmixing.

fi = plxilx) =

N, ;AX+p; P;)

Me, (x, m,,f(x ) M (X2 1) Myt (X )

plyi1x) = ﬂ(‘f'i}ﬁTxnpe

0 o

& = plyi|x)

Figure 3.5: Clustered Markov chain for multiple endmembeth W spectral bands

3.3.1 Derivation of Unmixing Messages

In this section, we derive the necessary unmixing messaggsg:x;) (message going from
a variable node to factor node) and-,(x;.1) (message going from factor node to variable
node) and show that these are each scaled Gaussian fungiarasneterized by a scale

factor, mean vector, and covariance matrix.

We use the following notation in the message derivationaviel
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x; . vector representation of the reflectance at wavelengtnoss

all M endmembersy; = 2V, ... z™)|7
y; . observed pixel measurement value atthavavelength
B : vector containing the abundance ratios of all
endmembersd = [34,. .., Bu]t
a™ : correlation factor betweeri™ andz\", of them!" endmember
A, : matrix containing correlation factors betweepandx; .

A; =diag[ol”, .. ™ oM

1 )

Message going from variable node to factor node

ply:|x) = N(Vi}BT’(i:pe)

i = plyi|x)

Figure 3.6: Evaluation of variable-to-factor vector megstor unmixing

Figure 3.6 depicts a portion of the graph needed to evalute the messaged variable

nodex; to factor f;. The message:;,.(x;) entering noder; in Figure3.6is the message
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from nodef;_; which is a probability distribution om;

my.(2;) oc N(z; m/(f), mg)), (3.16)
Wheremff), m;’? are the mean and inverse covariance (precision matrix) Qfx;). The
second message is from the factor nagend the factor function of this node jigy;|x;)
which is the observed pixel measurement. From Figlie we see that 2 messages act
as input to nodex;, the outgoing message of variable nages computed using the sum-

product rule given by Eq3(12):

Moy () = mye(x:)p(yi|e:) (3.17)
= N(zi; mD, m@ N (y;; BTz, pe) (3.18)

Expanding the Gaussians, we have

(. J I

g

k9
(2#)’1/2(]06)1/2 exp[ —
~—— ——

k!

[

_ 1 , A )
Mag () = (20) 0 det(miP) /2 ea:p{ Ly )i e - m@)} (3.19)

and

1 Z. o
myp(x;) = kY k:ilexp{ — §w?(m§3) + BpBh)x; — 2(m/(f)Tm§3) + yiTpeﬂT)aci}

(3.20)

NT (i i
(m{ mPm + y peyi) |-

{ 1
erp 3
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Using the following identity (15];Sec.8.1.6)

exp — %wTACU + cTw:| = e[]jp|: — %(CU — Ailc)TA<:lJ - Ailc) + 1CTJ4710 5

2
(3.21)
we may rearranging EQ(20 as
70 7.1 Lo 6-T 6. () T T (0 ()1
myr(x;) = k; ki exp| — §(mu mpm, +y; peyi — b (mp')"b) (3.22)
_ = — (N 1) T @ — (-1
exp (i — (mp) b)) mp (x; — (Mmp') " b)
In the above equatiomhﬁi) andb’ are
my) =m{ + Bp.s" (3.23)
T i
b' =m( mb +yIp.a7. (3.24)

To represent the equation as a Gaussian distribution wapiyuétnd divide by the term

(2m)M/2det () 112, yielding

mg(a;) = kY kL E2 (20)MPdet(mly)) 2 Nz, md, ml)]. (3.25)

The mean vectorh,(f) is

m{) = (m{)) b, (3.26)
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f = (I+1|x)_ (X,+1,AX+|J.,,P)

Mue{Xi) My (X5:1)

e e

Figure 3.7: Evaluation of factor-to-variable vector megstor unmixing

and the final message is the following scaled multivariatesSin

My p(x;) = K, ./\7(:131, mED)) (3.27)

with meanr?, preusmnﬁzﬁi , and scaling constart; = k0 k! k2 k3.

Message going from factor node to variable node

The second stage of the derivation is for messages of the#ofx,;,,): from a factor
nodef; to a variable node;. Figure3.7 depicts the portion of the graph needed to evaluate
these messages. The factor nggleas a factor function that models the spectral correlation
of the reflectances between spectral bafids+ 1} for all the A/ endmembers in the chain
and the mathematical representation of this function ictvalitional PDF ofe;,, given

Z;

fi=p(xin1|z;) = /\_/(fﬂi+1; Az, + p, P), (3.28)

wherep; and P; are mean vector precision matrix of the transition nois@éafactor node

fi-

The incoming message to nodeis m,¢(x;) from x;. The outgoing message at node
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fi» my(2it1), is derived below using3(28 and @.27), and the message passing rules

described in SectioB.2.1 From (3.13, we have

mialain) = [ mpa(e) plesle:) da, (3.29)

— Ko [ M@, ) N A, + u, P da. (3.30)

Expanding the Gaussians, we obtain

1 , ; s
mye(@i1) = K 202 det(rn}y))/ / exp[—;wi—m%%;) <wi—mff>>]

0
ki+l

1
o~ M/ det(P)l/Q exp[ - §(wi+1 - Aix; — lin)T-Pi(wi-‘rl — Aix; — Nz)] dx;

1
kz+1

(3.31)

1 - ~ (i i
=K, kooy ki exp[ -5 ((%)nga)(wl) - 2(mL)) mgg)(ﬂfz)

+ (i) g () + (i) Pol@in) = 2(ai) PA(:) — 28] Pt

u f

(3.32)

—1

= K; Ky kfyy exp {7 [(@iy1) Py — QNZ-Piwi+1]:|

=1 N\T o~ () ~ —1 -~ (i
ap| ()T + put PM] / exp[7(<mi>T () + ATPA) x

(3.33)
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Making the substitution# ands’ indicated in 8.33), we have

—1
Mpa(@ig1) = Ki Ky Kl exp {7 [(@i11)" Py — QMZ-TR‘CL‘HJ}
-1 - (i o
exp [7 [(mg))Tm( Doy ( ) 4 ] Pul}} (3.34)

/ exp [;((wi)TRa:i - 23%1-)} dx;

Using the following identity (15];Sec. 8.1.1)

/ ewp{—%:cTCaz—i—qu}d = /(det(2n(C)- )exp[ qg'C q] (3.35)

We integrate the quadratic form i.84) to obtain

TR—I
Mo (Tit1) = K; k?+1 k?z‘1+1 det(2mR™1) %P{S B S}exp[—

ol Pyl e | 5 ) )+l P

(3.36)

i 1. . i B
= K; k)\q kiyy v/ det(2nR™Y) exp {5 [(mfj))Tan + (xin1) P A; — ()" PA; | R

~ (INT ~ (i -1
[(m;)) m + A} Pl (zi41) - AzTPiT/'l’i]:| exrp [7 [($i+1)TPiwi+1 - 2H?Piwi+1}
-1

exp 5 [(mfﬂ )Tm;)

)+l P, m}]

(3.37)
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o 1 ~ (i ~ (% —1/.~ (2 ~ (i ~ (i ~ (@ —
= Kk} 1kl \/det(2n R exp {5 ((mL))ngg)R 1(m§3))TmL) - (mL))TmED)R !

ATP 2, — ()T RATP  , + () PAR ™ () i)
+ (1) PARAT Pl 2y — (200) BPAR APl p; — pl AR ()"
(3.38)

From here on we focus on rearranging the form388 into a Gaussian equation, as the
integration of a Gaussian with respecttpmarginalizes the multivariate function and the

left over terms represent a Gaussian distributiorcgn. From 3.38),

1
pa(@ia) = K kL by AR cap)| — S (R~ PAR AT(P) e

1 , -
+35 (2( 2N Tm) RTATPT — 2uT PA,RATPT + 24 P)mzﬂ}
(i

1 7 ~ (7 — ~ (7 ~ (1 _

co| 5 (im0 () = R 27 )+l (P PAR AT )|
| N

exp [5(—2NiTPiAiR—1(m§§))Tm<”)} .

(3.39)

Next step is to rearrange the above equation into a squareddnd apply the identity

shown in EQ.8.21) [15], so that EQ.B.39 looks like a Gaussian in terms @f , ;:

1
My (Tiy1) = K; kf?+1 k}+1 det(2rR™") exp { - §$z+1 (P,— PA;R A (P)" )wzﬂ

mD)
+ <(7hff))Tm§§)R*1AiT P’ 4+ u'P(1—- A, R 'ATPT) ):::,-H]
hT
Ll oNT () e () 1oy GNT o (4) LAT pT
cap| - 5 ((m) (mP—mPR (mp)> 4 (P P AR A P)

“TPA R—l(mg))Tm(i))]

m

(3.40)

44



We Assign the constari’ , to the latter part of above equation

1 ‘ . . . ‘
ki = exp { — = ((m“))T(mg) _ mgl:)R—l(mg?)T) )+l (H —PAR"
ATPT )i~ u?BAiR—l(mﬁiUTmff’)}

(3.41)

and rewrite 8.40 in terms ofmfé“), i.e Precision ofn;,(x;+1), and the pseudo constant

h” to give

N 1 .
Mpe(Tivr) = K kg kiyy ki V/det(2nR1) exp[ - §wiT+1m$3H)wi+1 + hTﬂ?iH]
(3.42)
Multiplying and dividing the above equation t(ysz/Zdet(mgi“))—W) , We obtain

- 1 ;
Mye(@i1) =K Ky kiyy ki V/det(2rR7Y) e:z:p[ - §wiT+1m§3H)‘L'i+1 + hTﬂ?iH]

1
(ZWM/Zdet(mgﬁH))lﬂ) <27TM/2det(m§§+1))1/2>

(3.43)
As Ris anM x M matrix, \/det(2r R~1) is written af27*/2, /det(R~1), and
Mpe(@i1) =K k0 kL k2 202 /det(R™Y) 202 det (m D) =172
K., (3.44)

, 1 i
27T_M/2det(mg+l))1/26xp[ B §$¢T+1m§;+1)wz'+1 +hlzi,
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Rearranging3.44) using the identity .21, we have

melinn) =K Ky Ky Koy Ky erp[ SR m) ] 2n 7 der(mipH )17

(. /

4
k1+1

1 7 i i -
ezvp[_ §<wz+1 — (m™)” 1h> mp" (“’m — (mp*™) 1h>]

(3.45)

The above equation represents a Gaussian distributionctorverm with meanm(l“)

and preC|S|or'mP+ ). This is concisely represented as

Mo (Tit1) = \f( k?—i—l kz'1+1 kz'2+1 k?—i—l k;j‘%/\_/’(%ﬂ, m(lﬂ) mgﬁl))’ (3.46)

Kit

(i+1) (i+1)

where precision matrixn, '’ and mean vectom,, '’ are
mi™ =P - PAR'A"P" (3.47)
m() = (mi™) 1 h (3.48)
AT = () 'mRTATPT + pIP(1 - ARATPT) (3.49)

Finally, concatinating the constants as &4, the outgoing message is given as a scaled
Gaussian

mfx(wiJrl) = Kipq /\7<33i+1; m,(f+l)> mgﬂ)) (3.50)

This derivation of the message between a factor node andblamode was generic and
may be applied to any factor nodéo compute messages on Markov chains of any length

N.

The likelihood of the chain shown in Figu@5 is found by determining the last mes-
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sage coming out of the chain, which would be a Gaussian loligtoin in terms otr . As
proposed in Eq.§.10), we marginalize out the reflectance variables, so thaikbkhood

does not contain any reflectance variables. The likelihapégon for the chain becomes

p(y; B) = / My f(Tn)dey (3.51)

In the above equation, the integration of the messaggx ) leads to a residual constant

of integration which is the desired likelihood of the chain.

3.4 Maximum likelihood estimator for abundance ratios

From the previous section, we are able to apply the sum-gtaalgorithm in order to
efficiently evaluate the likelihoog(y; 3) of the abundance ratios. From here, we may
optimize the likelihood expression in order to obtain a maxin likelihood estimatg of

the abundance ratios

A

B = arg maxp(y;8) st 0<fn<1, Emjﬁm =1 (3.52)

This non-linear optimization may be performed using anyfed constrained optimiza-
tion routine. In our work, we used an interior point algomthmplemented by Matlab’s
f m ncon function. The sum-to-one constraint was achieved via aafirguality con-

straint on the parameter vector 853 = 1, wherel, is vector of M ones.

3.5 Computational complexity

Computational complexity of evaluating the likelihood @ag key role in judging the ef-

ficiency of unmixing algorithms. Because the brute force afgm in Section2.4.2is
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the only other algorithm that supports realistic correlateffects between endmember
elements, we compare the complexity of the proposed suigdptainmixing algorithm

against brute force.

The brute force unmxing algorithm has a computational cexipl of O(N?3) because the
likelihood equation shown ir2(32 requires the computation of an inverse and determinant
of the covariance matrix of the pixel spectra, which is oésiz x N. The computational
complexity of both operations for aN x N matrix is O(N?), yielding an overall com-

plexity that is alsaD(N?).

Our proposed algorithm, sum-product unmixing (SPUX) hasraputational complexity
of O(M3N). As the likelihood evaluation involves computing messaafesach variable
node and factor node along the chain, the total computdtomsacan be broken down into
2 parts, the computational cost of messaggs andm, ;. Computation of the message
my, is of O(M?), this is because while calculating the meamgf, computing the inverse
precision matrix ofmny, is needed, this is shown in E§.R6. As the precision matrix is
of size M x M, the complexity for inverting it i<)(M/3). This message is computed
times as there ar& suchm, messages in a chain of lengt, hence the computational
complexity isO(M?3N). Similarly the complexity involved in calculating the magem,, ;

is O(M?), this is because to calculate the meangf the inverse precision matrix of tran-
sition noise and the inverse precision matrixof; are needed. Both of these matrices are
of size M x M and thus the computational complexity to invert these gregimatrices

is O(2M?). The message:,; is calculatedV times along the chain so the computational
complexity for calculatingV m,; message i€ (2M?*N). Neglecting the constar the
overall computational complexity 9(M?3N). As both the messages ha¥é)/3N) com-
plexity, the complexity of finding the likelihood of the cimas O(M3N).
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Compared to the brute force unmixing algorithm, we have redube computational im-
pact from the number of spectral bands frawi to N, i.e the spectral resolution of a
hyperspectral sensor only imposes a linear impact the gezpalgorithm’s computational
complexity—Dbut this is at the cost of increasing the comportal cost associated with the
number of endmembers captured in an pixel. Since genehally M, the sum-product
unmixing algorithm represents a highly accelerated metb@erform unmixing compared

to other unmixing algorithms.
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Chapter 4: Results and Analysis

In this chapter we demonstrate the unmixing performanceuofpooposed algorithm and
empirically evaluate the computational time required tin@ste abundance ratios. Since
the brute force algorithm presented in Secti#.2is the only other algorithm supporting
realistic correlation effects between endmember elememt®enchmark our performance

against this method.

4.1 Dataset

We use endmember reflectances from ASTER spectral libravyiged by NASAs Jet
Propulsion Lab 2] which is a collaboration of three other spectral librar{eBhe John
Hopkins University (JHU) Spectral Library, the Jet ProputsLaboratory (JPL) Spectral
Library, and the United States Geological Survey (USGSJ)gntthis library we selected
a subset of materials that had at ledst= 128 spectral samples in the rangetum —
1pm and at least 10 sample reflectances from which we could estitha Markov chain
parameterga;, 1;, 02} and the Gaussian parameters of mgé&n) and covarianc€ ™,
This yielded three materials: soil, borax, and concretepdidorm experiments on mixed

data, endmembers were resampled\io= 256 spectral samples and mixed pixels were

synthesized using Equatior.26), (2.27), and @.28.
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4.2

4.2.1

Unmixing Performance

Abundance Histograms

Here we compare the empirical distribution of abundancenesés produced by sum-

product unmixing and brute force unmixing. Fixing the trbeadance values g&soil) =

0.5, B(concrete) = 0.1 and g(borazx) = 0.4, we then simulated 1000 mixed pixel mea-

surements as described above. Applying both algorithmsisaiataset, we generate 1000

abundance estimates for each material—for each algoritHistograms of these results

are shown below.

Histograms of abundance values for Borax as endmember using Bruteforce unmixing
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Histograms of abundance values for Borax as endmember using Sum-product unmixing
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Figure 4.1: Histogram of abundance estimates for Borax as@member
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No.of occurences

No.of occurences

Histograms of abundance values for Concrete as endmemeber using Bruteforce unmixing
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Figure 4.2: Histogram of abundance estimates for Concrede aadmember
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No.of occurences

No.of occurences

Histograms of abundance values for Soil as endmemeber using Bruteforce unmixing
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Figure 4.3: Histogram of abundance estimates for Soil a;dmember

53



We make two observations from the histogram results. Riistestimates for both algo-
rithms are roughly evenly distributed on both sides of the sbundance value (shown by
the red vertical line), indicating approximate unbiasegné&econd, and more importantly,
the sum-product results appear nearly identical to thesbdarte results, which are known

to be MLE-optimal.

4.2.2 Root Mean Square Error vs Noise level

In this section we evaluate the root mean square error (RMEBpundance estimates
3 as a function of the standard deviation of additive white §#n noise (AWGN). As
reflectance values are betwel@nl|, we vary standard deviation of noise on the same
range of that of reflectances. The true abundance valuesinsgdating the synthetic
mixed pixels werej(Borax) = 0.4,5(Concrete) = 0.1 and(Soil) = 0.5. For each value of
o we generated000 mixed pixels and empirically evaluated the RMSE from the eissed
estimates. These results are shown in Figudelt can be seen from the plot that the errors
between the algorithms are similar for small valuesrpbut as noise increases, the gap
between the RMSE curves increases—indicating better peaioce for our sum-product

unmixing algorithm compared to the brute force algorithm.

4.3 Computation Time

The primary motivation of this work was to develop an accated unmixing algorithm, ac-
commodating endmember variability and correlation, thatains computationally tractable
for large spectral sampling rates. Here we quantify thetimme-of our sum-product algo-
rithm and compatre it to the brute force approach. To this emdartificially increased the
spectral sample rate of the ASTER data by interpolating engsamples—creating sam-

ple rates ranging frorV = 128 to N = 8192. Using this data, we empirically measured
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RMSE on estimated abundance values
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Figure 4.4. Root mean square error of abundance value estifatthe proposed sum-
product algorithm and the brute force algorithm
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the average time required to evaluate the likelihood fmctor each method. The results

are show in Figurd.5.

From the figure, we observe that when the number of specimgblea exceedd’ ~ 500,
the sum-produce unmixing algorithm is faster. The theoca¢timing predictions in Sec-
tion 3.5 are corroborated by the figure. The performance gap incsedrsenatically with
N, and atN = 8192 the sum-product algorithm is nearly three orders of mageitiaster

than the brute force approach.

2 Computational time taken for evaluating Log-Likelihood
10 E T T T T T T T T
—&— Sum-product unmixing
L | —©&— Brute force unmixing
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Figure 4.5: Computation time for evaluating abundanceihi®ds. The proposed sum-
product unmixing algorithm is orders of magnitude fasteldoge NV (ultraspectral data).
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Chapter 5: Conclusions

Advances in sensor technology are pushing remote speaphbigrmethods to ever-higher
spectral resolutions. With current technology transiignfrom the hyperspectral realm
(hundreds of wavelengths) to the ultraspectra realm (tnwds of wavelengths), the vol-
ume of data generated by these sensors is eclipsing ouyad@hform statistical unmixing
with models that support endmember variability and reaalister-wavelength correlation
properties. In this thesis, we developed a new statisticalixing method to address this
computational bottleneck. Our approach utilized Markoaiohmodels to capture end-
member variability, and by formulating the unmixing prabl@s an inference task on a
probabilistic factor graph, we where able to employ the guoduct algorithm for efficient
inference. ForN-band data, traditional methods have computational coxitpl€ (N?),
whereas the message-passing method developed only hakegiyn (N 1/3) that is lin-
ear in the number of bands. Since the numkepf endmembers considered is generally
much less thav, this algorithm represents a significant computationalgpmsy Examples
demonstrated that the new algorithm had estimation erites reonsistent with optimal
brute force methods, but that it executed three orders ohimate faster for large spectral

sample ratesv.

In future work we will extend the method to non-linear miximgpdels by generalizing the
observation factor$e; } in Figure3.2 This approach will maintain most of the message-

passing infrastructure developed in this thesis and erlabliérst consideration of endmem-

57



ber variability in mixing environments that are non-lingdollowing [26], future work will
also consider richer modeling parametrizations, inclgdang., background noise param-
eters and abundance priors, that can be jointly estimated expectation maximization
(EM) context. While current methods restrict this approactrtrealistic endmember mod-
els with inter-band independence assumptions, the megsssing methods developed in
this thesis will enable EM methods to be applied to more séalendmember correlation

structures captured by the Markov chain models proposdusrhesis.
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Appendix: Notation

In this appendix, we summarize some of the notation usedigfmaut the thesis.

v

bold lowercase variables denote column vectors
bold uppercase variables denote matricies

identity matrix

matrix determinant

matrix transpose

probability density function on

reflectance of endmember at:*" wavelength
reflectance vector of the'* endmember acros¥ wavelengths
reflectance vector at"* wavelength ford/ endmembers
mean vector of endmember

covariance matrix of endmember

Gaussian distribution with meagnand

covariance matrixC' over variabler

Gaussian distribution with megnand

precision matrixP over variabler
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mean vector of transition noise

precision matrix of transition noise

mean vector of the incoming message at wavelength
mean vector of the outgoing message at wavelength
precision matrix of the incoming message at wavelerngth

precision matrix of the outgoing message at wavelength
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