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ABSTRACT

Puladas, Charan. M.S.E.E., Department of Electrical Engineering, WrightState University, 2016.
Accelerated Hyperspectral Unmixing with Endmember Variability via the Sum-Product Algorithm.

The rich spectral information captured by hyperspectral sensors has given rise to a num-

ber of remote sensing applications, ranging from vegetative assessment and crop health

monitoring, to military surveillance and combatant identification. However, due to lim-

ited spatial resolution, multiple ground materials generally contribute, i.e. mix, to form

the spectrum recorded for a single pixel. The unmixing problem considers the inverse

problem of determining the underlying material spectra, called endmembers, from sen-

sor measurements. While classical unmixing approaches weredeterministic in nature and

did not attempt to identify in-scene materials, recent methods use labeled training data to

generate statistical models of endmember variabilities and perform statistical unmixing for

simultaneous material identification and abundance estimation.

However, the computational complexity of statistical unmixing isO(N3), cubic in the

numberN of sensed spectral bands. This large computational demand is at odds with con-

tinuous technological improvements that are dramaticallyincreasing the spectral resolution

of remote spectroscopy methods. In particular, current sensor technology is transitioning

from the hyperspectral realm (hundreds of spectral bands) to the ultraspectral realm (thou-

sands of spectral bands) and eclipsing the ability to perform statistical unmixing.

In this thesis we develop a computationally tractable statistical unmixing method. The

proposed method uses Markov chains to model endmember variability and the spectral

correlation properties present within endmembers. We use aprobabilistic graphical model

over multiple Markov chains to capture the mixing effects ofthe spectral sensor and employ

sum-product message passing to develop an accelerated statistical unmixing algorithm. The

computational complexity,O(NM3), of the proposed algorithm is only linear in the num-

ber of bands and depends on the number of endmembersM in a cubic fashion. AsM
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is generally small and fixed (in the 10s), the accelerated algorithm represents a dramatic

speed-up over existing methods. Examples demonstrate comparable error rates with two

orders of magnitude reduction in computation time comparedto existing statistical unmix-

ing methods.
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Chapter 1: Introduction

1.1 Overview of Hyperspectral Imaging

A hyperspectral sensor captures light that has been reflected back from a target material to

a sensor [27]. This is called the reflectance of the material, and it is measured across differ-

ent wavelengths of light which, collectively, constitute the spectral signature of a material.

Depending on the application, hyperspectral sensors may betuned to different bands in the

electromagnetic spectrum and have different spectral sampling rates. Because reflectance

is a key intrinsic characteristic of materials, hyperspectral imagery is often used to identify

target materials in a scene.

The data from a hyperspectral image can be depicted as a cube,with two spatial dimensions

—as in traditional color imagery—and the third dimension being the spectral dimension.

Each pixel on this cube would enclose a certain portion of theland being surveyed and

contains reflectance values of various materials that are being surveyed. Each material ex-

hibits characteristic spectral signature that differs from other materials and hence is a key

component in extracting a material from hyperspectral data.

High resolution is a key element in most imaging applications as this would enhance the

quality of the image thereby throwing light on finer qualities present in the scene. Spatial

resolution is key in monochromatic and color images but for applications where material
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detection or its composition are needed then having better spectral resolution is required.

Spectral resolution is directly proportional to the numberof samples of spectral bands in

a band of spectrum. In spatial domain, challenge is with the size of the pixel but in spec-

tral domain the challenge is with spectral variability. Spectral variability is the change of

spectral signature among different samples of the same material. Accounting for spectral

variability or popularly called endmember variability canbe difficult but for reliable detec-

tion of materials it has to be taken into account. More details about endmember variability

are in Section1.3.1.

An illustration of a hyperspectral scene under surveillance is shown below:

Figure 1.1: Scene under surveillance

In the above image the highlighted pixel in red block consists of different materials

like a waterbody, vegetation and concrete. These materialsin context of hyperspectral
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imaging are referred as endmembers. Data in a pixel enclosesspatial information at various

wavelengths along the spectrum thus creating the 3-D structure.

1.1.1 Difference between Color, Multispectral, and Hyperspectral Cam-

eras

A color camera captures light across 3 wavelengths of the electromagnetic spectrum: red,

green and blue. Traditional color cameras have been designed this way to capture infor-

mation similar to the human eye, including only the visible band from 380 nm to 700 nm.

In contrast, an imaging spectrometer has the capability of surveying a scene in the spatial

and spectral domains, but captures reflectance over many (> 3) spectral bands—potentially

outside the visible region.

As illustrated in Figure1.2, there are different classes of imaging spectrometers, each de-

fined by the number of spectral bands captured by the sensor. In multispectral imaging,

the number of spectral bands being sampled is approximately10–20. However, continuous

technological improvements have led to ever-increasing spectral resolution of remote spec-

troscopy methods, leading to hyperspectral cameras that capture100’s of spectral bands.

Some recently developed sensors that capture1000’s of spectral bands are referred to as

ultraspectral sensors. Landsat-8 is one of the popular multispectral sensor while Hyper-

ion & AVIRIS are well-known hyperspectral sensors. The increasing spectral resolution of

sensing technology is outpacing the processing capabilities of current sensor exploitation

algorithms [7], and as described in Section1.4, addressing this issue is the primary focus

of this thesis. Additionally, and for convenience, we generally refer toN -band imagery as

hyperspectral imagery (HSI), regardless of the particularnumber of bandsN .

3



Figure 1.2: Spectral resolution in various sensors

1.2 Applications of Hyperspectral Imaging

Traditional uses of hyperspectral were primarily focused on remote sensing applications

like mining for mineral ores, but this has changed in the recent past. Hyperspectral imaging

is currently being used in a wide range of domains, and here wehighlight a few example

applications:

• Mineralogy:

One of the first applications of hyperspectral imaging was inmineralogy because of

its inherit traits. Different minerals in there crude form are identified through their

unique spectral signatures. [11]

• Surveillance:

It has been used to spy on enemy encampments and detect technological advance-

ments being made in enemy countries using drones and satellite imagery.[8]

• Agriculture :

This is a recent development where crop health is monitored and variations of crop
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health in different geographical locations are recorded. HSI has also been used to

control pests in agricultural fields.[20]

• Ophthalmology:

Hyperspectral imaging has been used to detect the levels of oxygen in the retina to

monitor eye vision[23].

• Astronomy & space surveillance:

Similar to mineralogy, HSI characteristics fit well for astronomy where detection of

materials and their composition is necessary to understandcharacteristics of distant

objects. As spectral signatures are unique for every material, HSI is a powerful tool

to detect them[12].

• Food and pharmaceutical processing:

HSI is used to identify any faults, defects, and foreign bodies present in food mate-

rials which might not be detected by laser-based methods or high spatial-resolution

cameras[17].

• Environment:

Hyperspectral imaging is being used to monitor the composition of the atmosphere

and detect changes in its composition. For example, it is used to monitor for harmful

substances leaking in to the atmosphere from chemical industries[6].

While the list of HSI applications is diverse, one common theme is the use of measured

spectra to identify particular materials and their abundances within imagery. This task is

referred to asunmixing and is desribed in the following section.

1.3 The Unmixing Problem

Because hyperspectral sensors are often deployed far away from the area that they are

imaging, the ground sample distance (GSD) is generally large. For example, the airborne
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AVIRIS sensor has a ground spatial resolution of20m×20m [24]. With low spatial resolu-

tion, i.e. “large pixels”, there is a large chance that multiple ground materials contribute to

the measured spectrum for each image pixel. The linear mixing model (further described

in Sec.2.1.1) describes how individual material spectra, referred to asendmembers, “mix”

to form a measured spectrum

y =
M∑

m=1

βmx
(m). (1.1)

Herey is the observed hyperspectral data for a given pixel. It is anN×1 vector containing

the reflectance values acrossN different wavelengths. The variablex(m) represents the

spectral signature of themth endmember, and0 ≤ βm ≤ 1 is the fractional composition

of themth endmember in the pixel. The term coined for the fractional compositionβm of

an endmember in spectral imaging is theabundance ratio, and
∑

m

βm = 1. Although the

sensor measures mixed datay, we are generally interested in the knowing the constituent

materials in the scene. Consequently,unmixing is the process of determining the endmem-

ber spectra{x(m)}and estimating their corresponding abundances{βm} from measured

data—thus unwinding the mixing process[21].

An illustration of mixing and unmixing is shown in Figure1.3. The left plot illustrates

4 different endmember spectral signatures, and the right plot illustrates a mixed linear com-

bination of those signatures. The unmixing process attempts to recreate the four endmem-

bers on the left, and their abundances{βm}, from the mixed measurements available in the

image.

1.3.1 Endmember Variability

While classical unmixing approaches typically treat endmembers as constant quantities,

more recent approaches accomodate natural variability within endmembers. For example,

the spectrum of grass may vary depending on the species of grass considered and its health

state, e.g., dry grass versus healthy green-colored grass.Another example, taken from the

6



Figure 1.3:Mixing: multiple endmember spectra (left) are combined to form a single mixed
spectrum (right). Unmixing: from a mixed spectrum, unmixing attempts to isolate the
original endmember spectra and their abundances.
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ASTER spectral library [2], is depicted in Figure1.4. Here, natural variations in a Calcite

compound contribute to variability in the endmember spectra. Although both samples are

of calcite compounds, we observe that they have different reflectance signatures. Conse-

quently, understanding and modeling endmember variability is important for unmixing and

material identification algorithms. As noted in [1], endmember variability may be modeled

in 2 ways:

1. Endmembers as sets.

2. Endmembers as statistical distribution.

In the first method, a set of viable endmembers for each material class is considered. The

second method considers endmembers as random vectors described by a probability density

functionp(x(m)) for each material classm. The statistical approach is more common and

consequently has led to a number of recent statistical unmixing algorithms that account for

endmember variability.

1.4 Contributions and Organization of the Thesis

Continuous improvement in sensor technology is contributing to ever-increasing spectral

sampling rates for imaging spectrometers. Unfortunately,algorithmic advances have not

kept pace with technology, and statistical unmixing has become computationally intractable

for recent hyperspectral and ultraspectral sensors. In particular, forN -band data, current

statistical unmixing algorithms with realistic inter-band correlation models have a compu-

tational complexity ofO(N3). In this thesis, we develop and evaluate a novel statistical

unmixing algorithm with complexityO(N).

In Chapter 2, a brief overview of different types of mixing models is given along with

a summary of different classical unmixing algorithms and statistical unmixing algorithms.
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Figure 1.4: Endmember variability: two calcite samples exhibit different reflectance spec-
tra. Source: ASTER spectral library [2].
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In Chapter 3, we present our endmember variability model based on Markov chains and

our accompanying unmixing algorithm that achieves linear complexity through the use of

sum-product message passing. Chapter 4 compares results obtained by traditional unmix-

ing and our proposed algorithm using data from the ASTER spectral library. We conclude

in Chapter 5 with a summary of our algorithm’s performance andsuggestions for future

research. Notation is summarized in the Appendix (6).
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Chapter 2: Overview of Hyperspectral

Unmixing algorithms

Over the past couple of decades there have been different types of spectral unmixing algo-

rithms proposed, each based on different criteria. As discussed above, spectral unmixing

involves estimating the spectral signatures of endmembersand their abundance values in a

pixel. Endmember variability, measurement noise, modeling defects, environmental condi-

tions and sensor inaccuracies make unmixing a challenging task. Unmixing, in plain terms,

is the unwinding of the interaction of incident light with individual endmembers. In this

Chapter, we review existing unmixing algorithms; however, first it is necessary to consider

the forward model, i.e. spectral mixing.

2.1 Spectral Mixing

As light is reflected byM materials in a scene, the spectral measurement at each pixel

can be modeled as mixture of the endmember spectraX = [x(1), . . . ,x(M)] and their

abundance ratiosβ = [β1, . . . , βM ]T . There are two types of mixing models: the Linear

Mixing Model and non-linear mixing models[30].

11



2.1.1 The Linear Mixing Model

The linear mixing model (LMM) is an approximate model because of the primary assump-

tion that, in a hyperspectral image the number of multiple scatterings of light among end-

members is negligible and may be neglected, i.e., on the ground there are not any conditions

that cause light to be reflected from multiple endmembers. Under such conditions, the frac-

tional abundances of the materials correspond to the composition of the measured spectra,

which can be modeled as a linear combination of the endmembers [21]. This is referred

as linear mixing model. This means that no endmember contains any impurity from sur-

rounding endmembers which is unlikely in most of the data butLMM is perhaps the most

widely used and accepted model for developing algorithms tosolve the unmixing problem.

The functional form of the LMM was given in (1.1) and repeated here for completeness:

y =
M∑

m=1

βmx
(m) +w = Xβ +w. (2.1)

Here,y is theN × 1 observed pixel measurement resulting fromM endmembers,x(m)

is the spectral signature of endmemberm, βm is the abundance ratio corresponding to

endmemberm, andw is background or instrument noise. The constraints on{βm} are

0 ≤ βm ≤ 1, ∀m ∈ {1, . . . ,M} (2.2)

M∑

m=1

βm = 1 (2.3)

These constraints signify that all the elements in the abundance vector should be non-

negative, less than one, and should sum up to one—referred assum-to-one constraint.
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2.1.2 Nonlinear mixing model

The non-linear mixing model is based on the ideology that incident light reflectsmultiple

times with in-scene materials, thus generating a spectral signature which has multiple scat-

terings involving different endmembers. The model is more complex than LMM and is

potentially more accurate due to larger degrees of freedom.The general non-linear model

may be expressed as

y = f(X,β) +w, (2.4)

wheref is a non-linear function, andX andβ now potentially contain higher-order in-

teraction elements. For example, a second order model was proposed by Nascimento and

Bioucas-Dias [13] where heterogeneous endmembers are used to effect non-linear mixing

and new abundance ratios are assigned for such heterogeneous endmembers. The model is

similar to LMM, but has additional terms where each additional term represents the second

degree interactions between two endmembers. A two-material example between soil and

trees takes the form [13]

y = [x(soil),x(tree),x(soil,tree)][βsoil,βtree,βsoil,tree]
T +w. (2.5)

Most unmixing literature focuses on the LMM, and we adopt theLMM for our work.

2.2 Classification of unmixing algorithms

There are different classifications for spectral unmixing algorithms. One of the well-known

taxonomies of these algorithms is given by Bioucas-Dias [3] and includes the following

unmixing algorithm categories: Geometrical unmixing, Statistical unmixing, Sparse re-

gression unmixing, Signal subspace unmixing, and Spatial contextual unmixing. Here, we

adopt a broader parsing of existing algorithms into two major categories:

13



1. Classical unmixing algorithms

2. Statistical unmixing algorithms

In the classical approaches, mixing of endmember spectra follows the LMM (2.1) and the

endmembers are treated as deterministic unknown quantities. In the statistical approaches,

the endmembers are treated as random quantities, typicallyfollowing the Normal Compo-

sition Model (NCM) [8].

2.3 Classical Unmixing

The basic assumption in most of the classical unmixing algorithms is that, the spectral

information can be modeled using LMM. Apart from LMM anotherassumption most of

the classical unmixing algorithm make is the pure pixel assumption. In pure pixel based

algorithms, the assumption is that, in the observed pixel measurements there would be at

least one pixel measurement that would contain only a singleendmember. The definition

of a pure pixel is

y = x(m). (2.6)

The definition of pure pixel defined above signifies that the observed pixel spectrumy is

equal to a single endmember’s spectral signaturex(m) and there would beM such distinct

pure pixels, each containing a unique endmember spectra. Algorithms attempt to identify

these pure pixels from the data to achieve unmixing. Some of the prominent algorithms in

this category are the Successive Projection Algorithm (SPA), Vertex Component Analysis

(VCA), N-FINDR and Successive Volume Maximization algorithms.

14



2.3.1 Geometrical analysis of Hyperspectral data

As most classical unmixing algorithms discussed in this Chapter use convex sets analysis

on hyperspectral data, a brief introduction about some of the assumptions and terminol-

ogy is discussed in this section. Application of convex geometry to hyperspectral unmix-

ing was introduced by Craig [5]. The definition of a convex hull for endmember spectra

(x(1), . . . ,x(M)) is:

conv[x(1), . . . ,x(M)] =

[

y =
M∑

m=1

θmx
(m) |θ ≥ 0,

M∑

m=1

θm = 1

]

(2.7)

The above equation can be traced back to the noiseless case ofthe Linear Mixing Model,

Eq.(2.1) [4]. The inference that can be drawn is that the observed data isa convex set of

endmember spectra,i.ey[n] ∈ conv[x(1), . . . ,x(M)], ∀n = 1, . . . , L (L is the number of

pixels in the data and “conv” is the convex hull). Unmixing based on convex geometry is

based on estimating a set of vectors for endmember spectra, such that the estimated simplex

of conv[x̂(1), . . . , x̂(M)] gives the closest fit to the true endmembers simplex formed bythe

convex conv[x(1), . . . ,x(M)]. An affine transformation on each endmember spectral vector

x(m) is chosen as the estimated convex conv[x̂(1), . . . , x̂(M)]. This would mean the presence

of an affine transformation on the observed pixel spectray[n] given as:

y[n] = Cz[n] +w (2.8)

HereC ∈ R
N×(M−1). The transformed measurementz[n] is formulated as:

z[n] = C†(y[n]−w) (2.9)
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where† denotes the Moore-Penrose pseudoinverse. Applying the above inference to Linear

Mixing Model,z[n] can be written also as:

z =
M∑

m=1

bmβm (2.10)

Herebm = C†(xm −w) ∈ R
M−1 and the simplexB is defined on the convex hull of

conv[b1, . . . , bM ].

2.3.2 Successive Projection Algorithm

In SPA, the estimatêx(m) of the spectral signaturex(m) is obtained using the orthogonal

projectionP⊥
mcorresponding tôx(m−1). SPA assumes the pure pixel criteria and the ob-

jective of the algorithm is finding pure pixels for every endmember in the image. Here

li (i = 1, . . . ,M ) is used to index the pixels that are pure. The first endmembercan be

identified as

x̂(1) = y[l̂1], (2.11)

wherel̂1 is obtained using the equation

l̂1 = arg max
n=1,...,L

||y[n]||22. (2.12)

HereL is the number of pixels in the image. The estimated endmemberspectra is assumed

to be a perfect identification, i.êx(m) = x(m). Under this condition the other endmem-

bers are identified using a geometric strategy termed as nulling. Nulling is the standard

geometric operation of projecting an orthogonal componentof the current vector. Using

the estimated endmember vectorX̂(m−1) = [x̂(1), . . . , x̂(m−1)], the orthogonal projection

of X̂(m−1) is evaluated to estimate the next pure pixel index in the data. This process is

repeatedly done to identify all the pure pixel indices from the spectral data that correspond

16



to individual endmember spectra. The algorithm is summarized below [30]:

1 : P⊥ = I

2 : for [m = 1, ...M ]

3 : l̂m = arg max
n=1,...,L

||P⊥y[n]||22

4 : x̂(m) = y[l̂m]

5 : P⊥ :=
((I − (P⊥x̂(m))(P⊥x̂(m))T

||P⊥x̂(m)||22)

)

P⊥

6 : end for

7 : X̂ = [x̂(1), ..., x̂(M)]

2.3.3 Simplex Volume Maximization

In this section we discuss about two algorithms, N-FINDR & Successive Volume Maxi-

mization, that are based on the same principle: Simplex Volume Maximization . These

algorithms assume LMM and pure pixel model to search for distinct pure pixels in the

spectral data. A key point of these algorithms is that they make use of the fact that a pixel

spectrum can be represented geometrically as a simplex and that the volume of such sim-

plex is to be maximized by distinct pure pixels as vertices ofthe N-dimensional simplex.

The objective function described in [30] is

max
B

vol(B) s.t. bm ∈ conv
[
z[1], . . . , z[L]

]
,m = 1, ...,M (2.13)

In the above equation “vol” is the volume of the simplexB. The values ofB, bm & z[n]

are obtained from the Section2.3.1. Below are some algorithms that make use of simplex

volume maximization.
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N-FINDR

The N-FINDR algorithm is based on the geometric nature of spectral data. The objective

function is a simplex containing spectra of observed pixelsand the optimization is about

maximizing the volume enclosed by this simplex such that thevertices of the simplex are

distinct pure pixels which would represent individual endmember spectra. The algorithm

starts with random selection of observed pixel data as vertices of theM − 1 dimension

simplex. The initial volume of the simplex formed using random pixels picked as pure

pixels is calculated. On the next iteration, each pixel on the vertex is replaced by another

pixel and the volume of the simplex is recalculated. If the volume increases then this

change remains or else this is tested on other pixels. This iterative process is continued till

the volume of the simplex converges to a maximum value. Once such maximum is reached

then the vertices of the simplex are spectral signatures of individual endmembers. If there

are no pure pixels for an endmember then the algorithm ends upestimating a mixed pixel

spectra as endmember spectra for that endmember. Sometimesa local maxima could be

encountered and the algorithm might stop prematurely before finding the closet match on

endmember without pure pixel. To avoid such premature optimization, the algorithm is run

several times with different initialization of the vertices that form the simplex [28].

The volume determination starts with augmenting the endmembers with a row of ones

E =






1 1 ... 1

x(1) x(2) ... x(M)




 (2.14)

The volume of the simplex is determined using the formula

V (E) =
1

(M − 1)!
abs
(
|E|
)
, (2.15)
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whereM − 1 is the number of dimensions occupied by the data. After endmember de-

termination & spectra estimation is done, the fractional abundances of the corresponding

endmembers are evaluated. This procedure is done using least squares inversion or non-

negative constrained inversion. The solution [14] follows as

β̂ = (ETE)−1ETy. (2.16)

This is done iteratively on each pixel to estimate endmemberspectra and their abundance

ratios.

Successive Volume Maximization

This algorithm is based on the same objective as discussed inN-FINDR, where endmem-

ber uncertainties are found by maximizing the volume of the simplex enclosed by observed

spectral data. This algorithm [29] uses a similar idea as SPA, where the solution to estimat-

ing endmember spectrâx(m) is given by Eq.(2.12). The algorithm starts with dimension

reduction on the pixel spectra and then calculating a matrixF as:

F =

(

b1 b2 . . . bM

)

(2.17)

fm =






bm

1




 , (2.18)

z =






z

1




 (2.19)

The algorithm projects orthogonal projections from estimated endmember vector succes-

sively every time to find each endmember spectra (similar to SPA) but instead of this oper-

ation being done directly on̂X, here it is done on a matrix with a vector of ones augmented
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to X (Eq.(2.17)). From [29]

|det(F )|2 =
M∏

m=1

∥
∥P⊥

F1:m−1fm
∥
∥
2

2
(2.20)

Maximizing the volume of the simplex Eq.(2.13) is same as maximizingF Eq.(2.17)

[29][30]. Successive volume maximization, (SVMAX) uses the successive structure of

Eq.(2.20) to generate an estimation of endmember spectra recursively. An endmember̂bm

is generated by the knowledge of its previous estimatesb̂1, ...., b̂m−1. The solution for the

endmember spectral signature is

b̂m = z[l̂m], (2.21)

l̂m = arg max
n=1,...L

∥
∥P⊥

F 1:m−1z[n]
∥
∥
2

2
(2.22)

A detailed description and complexity assessment of the algorithm may be found in [29].

2.3.4 Simplex Volume Minimization

Simplex volume minimization is an algorithm that finds a simplex with the least volume

enclosing all the pixel measurements. This is an improved version compared to the results

obtained using SVMAX or N-FINDR as it performs better even ifthere are not any pure

pixels in the measured data, thus giving more flexibility to the model to fit real data. The

objective function varies from SVMAX as shown:

min
B

vol(B) s.t.z[n] ∈conv[b1, . . . , bM ] (2.23)

This objective function does not have a closed form scheme like successive volume max-

imization and has to be solved empirically, which makes the optimization more complex
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to handle. Because of the constraints on the abundance values, this is a non-convex opti-

mization. Additional details describing the optimizationroutine and of the algorithm may

be found in [30][31].

2.3.5 Vertex Component Analysis

Vertex component analysis (VCA) was proposed to be an improvement over other exist-

ing algorithms in the classical unmixing category by BioucasDias and Nascimento [19].

The VCA sets out in the determination of endmember spectral signatures using the pixel

spectrum obtained through a hyperspectral sensor. VCA assumes the pixel spectra can be

modeled by LMM and assumes pure pixel model. VCA makes use of two facts, first is that

the endmember space can be represented as a simplex whose vertices represent endmem-

bers present in the observed data and second is that an affine transformation applied to a

simplex results in a simplex. The algorithm starts from the inference that the abundance

vectorβ can be represented as a simplex, then the geometry needed to represent the spectral

signaturesx overN bands of spectrum is also a simplex represented asSx and the observed

pixel spectrum is represented as a convex cone,Cp. The orthogonal projection ofCp on to

a hyperplane results in a simplex that has vertices corresponding toSx i.e Sp. OnceSp is

determined, then the VCA algorithm functions similar to SPA where it iteratively projects

data orthogonally to the subspace spanned by the endmembersalready determined, and this

iteration continues until all the endmembers are searched for.

The VCA algorithm has simpler computational complexity because of usage of dimension

reduction techniques such as Principle Component Analysis (PCA), where the number of

spectral bands would be reduced fromN to P whereP ≪ N . For this reason, VCA has

better processing and computational speed and is considered to be one of the best algo-

rithms in unsupervised hyperspectral unmixing.
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2.4 Statistical Unmixing

2.4.1 Normal Compositional Model

The Normal Composition model (NCM) is a popular mixing model because it addresses

both endmember variability and sub-pixel mixing. The NCM applies a normal distribution

on endmember reflectances to model endmember variability among different samples of an

endmember along different wavelengths. Mathematically, the observation model follows

the LMM

y =
M∑

m=1

βmx
(m) +w, (2.24)

where the elements ofw are additive white Gaussian noise with varianceσ2
w. However,

now each endmemberx(m) is assumed to have ana priori Gaussian distribution

x(m) ∼ N (µ(m),C(m)) (2.25)

The constraints on the abundancesβm are the same as the LMM:
M∑

m=1

βm = 1, 0 ≤ βm ≤ 1.

The above set of equations signify thatx(m) is a random vector representing the normal dis-

tribution of an endmemberm with a mean vectorµ(m) & covariance matrixC(m).

Most of the statistical unmixing algorithms use the NCM, and proceed by estimating the

NCM parameters. These are estimated by using stochastic expectation maximization al-

gorithm. For further explanation on the derivation of theseparameters refer [26]. It can

also be inferred from the NCM that the pixel measurement values y are also distributed

normally

y ∼ N (µy,Cy) (2.26)
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with meanµy and covariance matrixCy, given as

µy =
M∑

m=1

βmµ
(m) (2.27)

Cy =
M∑

m=1

β2
mC

(m) + σ2
wIM . (2.28)

Prior knowledge of endmember reflectances are assumed to be available through a spectral

library.

2.4.2 Brute Force Algorithm for Unmixing

One of the most direct approaches to statistical unmixing isto apply the maximum like-

lihood principle to the NCM. As mentioned in the previous section, by using a spectral

database the meanµ(m) and covarianceC(m) of endmembers may be determined, and the

resulting Gaussian parameters of the pixel measurements derived as in (2.27) and (2.28).

The likelihoodp(y;β) of the abundance ratiosβ then has the form

p(y;β) = (2π)−N/2(det(Cy(β))
−1/2 exp

[

−
1

2
(y−µy(β))

TC−1
y (β)(y−µy(β))

]

, (2.29)

where we now writeµy(β) andCy(β) to explicitly indicate the dependence onβ. For a

given pixel measurementy, we may compute the maximum likelihood abundances as

β̂ = argmax
β

p(y;β). (2.30)
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However, maximizing the likelihood is same as minimizing the negative of log-likelihood,

hence we minimize the negative log-likelihood to estimate the abundance vectorβ,

β̂ = argmin
β

{− ln p(y;β)}, (2.31)

with

ln p(y;β) = −
N

2
ln(2π)−

1

2
det(lnCy(β))−

1

2
(y−µy(β))

TC−1
y (β)(y−µy(β)). (2.32)

This is a straightforward method for unmixing endmembers that supports arbitrary covari-

ance structures in the NCM model, however when the spectral resolution is increased, the

computational time required to unmix increases dramatically. Inspecting (2.32), we see

that this is due to the need to recompute the determinant and inverse ofCy(β) for each

candidate argumentβ of the objective function. If the measurementy containsN spectral

bands, the complexity of each of these operations isO(N3).

2.4.3 Bayesian Estimation of linear mixtures using NCM

The hierarchical Bayesian model proposed by Eches [22] uses the NCM model to treat

pixel measurements as linear combination of endmembers with endmembers represented

as normal distributions. This model doesn’t use a spectral library to estimate endmember

means and covariances, instead uses one of the classical unmixing algorithms like VCA or

NFINDR to extract endmembers from observed spectral measurements and estimates cor-

responding mean vectors for each endmember. The covariancematrix for an endmember

is assumed to be proportional to an identity matrix

C(m) = σ2
(m)IN (2.33)
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The endmember varianceσ2
(m) is assigned a conjugate inverse gamma distribution with

suitable priors for the hyper-parameters of the conjugate inverse gamma distribution. The

Bayesian approach is used to estimate abundance values of endmembers. The likelihood of

the observed pixely is

f(y|β, σ2
(m)) =

1

[2πσ2
(m)c(β)]

N/2
· exp

[

−
‖y − µy(β)‖

2

2σ2c(β)

]

. (2.34)

The value ofµy(β) is same as shown in (2.27) andc(β) =
M∑

m=1

β2
(m). As the empirical

evaluation of posterior is too complex to derive a MMSE or MAPestimate, the posterior is

evaluated by EM algorithm but to limit the shortcomings of the EM algorithm Markov chain

Monte Carlo (MCMC) simulations are done to iteratively generate samples of the joint pos-

terior of the abundances and endmember variance. A uniform distribution is chosen as the

prior for abundance values. The sampling algorithm used is the Metropolis-within-Gibbs

sampler that would generate samples of the posterior function. An improvement is also

made to this model where the endmember covariance is a diagonal matrix,i.e a different

variance along the diagonal (This is discussed in Section3.1).

The drawback of this model is that the endmember covariance is proportional to an identity

matrix and does not account for spectral dependencies between wavelengths. Apart from

this, the model uses Monte Carlo simulations to derive to optimum values which contributes

to slow runtime.

2.4.4 Sampling piecewise convex unmixing and endmember extrac-

tion

S-PCUE was proposed by Zare et al. [32] and the algorithm searches for sets of endmem-

bers in non-convex data sets and uses a distribution on endmembers to model endmember
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variability. Through several sets of endmember distributions a piecewise convex model is

built and the algorithm performs estimation of endmember uncertainties. After extraction

of endmembers, the mean vector is evaluated for each endmember. In this method the co-

variance of the endmember is assumed to be proportional to anidentity matrix.

The S-PCUE algorithm uses a Metropolis-within-Gibbs sampler to divide the observed

non-convex data into convex sets, sample the convex sets, estimate the endmember dis-

tributions in each convex set, i.e its mean vector and estimates corresponding abundance

values for each endmember. As this algorithm uses a samplingapproach the algorithm

is iterated approximately 50000 times to achieve convergence. The results from S-PCUE

were found to be better than VCA on simulated data and AVIRIS Indian Pines data-set.

The drawback of this approach is that the endmember covariance matrix is modeled to be

fixed and proportional to an identity matrix. Another drawback of this algorithm is that it

relies on Monte Carlo simulations for estimation which contribute to slow unmixing times.
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Chapter 3: Accelerated Unmixing via

the Sum-Product Algorithm

3.1 Probabilistic Graphical Model for Unmixing

The performance of statistical unmixing algorithms is governed by the assumptions made

in their underlying models. However, to combat computational complexity, most exist-

ing algorithms assume that thea priori distribution of endmember reflectance values are

independent at different wavelengths. For example, the S-PCUE algorithm [32] assumes

the NCM for each endmemberx(m), p(x(m)) ∼ N (µ(m),C(m)); but, this model model

constraints the covariance matrix to be proportional to an identity matrix

C(m) = σ2
(m)I (3.1)

Such a covariance matrix does not model the correlations between wavelengths and as-

sumes same varianceσ2
(m) for all the samples. Similarly, the hierarchical Bayesian model
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proposed by Eches [22] uses the NCM with a diagonal covariance matrix

C(m) =












σ2
(m)(1)

σ2
(m)(2)

. . .

σ2
(m)(N)












. (3.2)

Although this captures different reflectance variances among the bands, correlation proper-

ties are still not modeled although correlated values are very prevalent in actual endmember

spectra. For example, the calcite spectra depicted in Fig.1.4 show significant smoothness

over many of the bands, suggesting strong correlation properties between the reflectances

of adjacent wavelengths.

Although the brute force algorithm presented in Sec.2.4.2does support arbitrary co-

variance structures, the associated computational complexity is intractable for large spec-

tral sampling rates. Therefore, we seek an alternative model that is both computationally

tractable and that captures the correlation properties of endmembers. As described in the

following section, we propose a Gaussian Markov chain for this purpose.

3.1.1 Markov Chain Model for Endmember Variability

In the past, probabilistic graphical models like the Gauss Markov random fields (GMRF)

have been used on multispectral and hyperspectral images tomodel spatial and spectral

dependencies for an endmember [25]. An adaptation of these concepts is used where a

Markov chain is used in the spectral dimension to model the endmember variability. End-

member reflectances at each wavelength are modeled as randomvariables in a Markov

chain and the conditional transition probabilities from one random variable to another in-

duce the desired correlation properties. In our model we usea first order Markov chain

such that the conditional probability of the reflectancexi+1 at wavelengthλi+1 only de-
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pends only on the previous reflectancexi

p(xi+1|x1, x2, . . . , xi, xi+2, . . . , xN) = p(xi+1|xi), (3.3)

and with the probability of the entire endmember/chain given as

p(x) = p(x1)
N−1∏

i=1

p(xi+1|xi). (3.4)

Adopting a first-orderGaussian model, we have

p(xi+1|xi) = N [xi+1;αixi + µi, σ
2
i ], (3.5)

with the following designations

• xi: random variable to representing the unknown reflectance oftheith element of an

endmember, corresponding to a wavelengthλi

• p(xi+1|xi): the conditional (transitional) probability betweenxi andxi+1

• αi: the correlation factor betweenxi andxi+1

• µi: mean of transition noise

• σ2
i : variance of transition noise

• p(x1): Gaussian prior probability with meanµ0 and varianceσ2
0

From above it is evident that other parameters like the correlation factorαi and noise pa-

rametersµi, σ
2
i and parameters of prior probability

(
p(x1)

)
µ0, σ

2
0 are needed to form the

probability distributionp(x). The totality of these parameters, i.e{µ0, σ
2
0},

{αi, µi, σ
2
i }

N−1
i=1 across the chain, define the variability of the associated endmember and

are assumed to have been estimated offline using a spectral database, such as the ASTER
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spectral library.

As illustrated in Fig.3.1, the Markov chain may be graphically depicted using afactor

graph, where circles represent random variables (in this case unknown reflectances of an

endmember) and squares represent factors (conditional probabilities in this case) in a joint

PDF over all of the variables considered. Edges in the graph connect factors to the vari-

ables that they depend on. For example, for factori, we havefi = p(xi+1|xi) with edges

connecting toxi andxi+1.

Figure 3.1: A Factor graph depicition of a Markov chain representing the random variability
of a single endmember

3.1.2 Graphical model for unmixing

In this section we develop a graphical model representationfor spectral measurements

with endmember variability. This model will be used for unmixing and is formed as a

combination of the linear mixing model and the Markov chainsintroduced above.

A typical hyperspectral pixel would generally contain morethan a single endmember.

As such, we employ one Markov chain for each endmember. If there areM endmembers,

then we useM Markov chains to model all the endmembers in a pixel. We supplement

known information like the correlation factorα and pixel observationsyi into these chains.

In Fig. 3.2, we shown an example of this model for the caseM = 3. Here the variable

nodex(m)
i represents the reflectance at wavelengthi for endmemberm. f (m)

i is the factor

node between spectral bands{i, i + 1} for endmemberm, containing the factor function

p(x
(m)
i+1|x

(m)
i ) as shown in Figure3.2. α

(m)
i is the correlation factor at factor nodef (m)

i ,

modeling the spectral correlation between spectral bands{i, i + 1} with µ
(m)
i andσ(m)2

i

being the mean and variance of transition noise at factor node f
(m)
i . The factorφi =
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p(yi| [x
(1)
i , . . . , x

(M)
i ],β) represents the distribution of the measurement at wavelength i.

We follow the linear mixing model and, as in the NCM [26], assume that measurement

noise is Gaussian, i.e.

yi =
M∑

m=1

βmx
(m)
i + ǫi (3.6)

whereǫi represents additive white Gaussian noise with precisionpǫ. As such, we have

φi = p
(
yi| [x

(1)
i , . . . , x

(M)
i ],β

)
= p(yi|xi,β) = N̄ (yi;β

Txi, pǫ) (3.7)

for measurement factorφi, computed for each wavelength indexi = 1, . . . , N .

Figure 3.2: A factor graph depiction of the spectral measurement system consists of mul-
tiple interacting Markov chains, one for each endmember.M = 3 endmembers are shown
in this example.
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3.1.3 Likelihood of abundance ratios

The likelihood of the measurement model, depicted in Fig.3.2, depends on the priors

p(x
(m)
1 ), the conditional probabilitiesp(x(m)

i+1|x
(m)
i ), andp(yi|xi;β), i.e the observed pixel

measurements. We formulate the general likelihood for a pixel havingM endmembers

with N spectral bands in it. This is shown below:

p(y,X;β) =

(
M∏

m=1

p(x
(m)
1 )

N−1∏

i=1

p(x
(m)
i+1|x

(m)
i )

)

·

(
N∏

i=1

p(yi|xi;β)

)

(3.8)

whereX = {x1, . . . ,xN} includes allN ×M unknown reflectances. The above equation

is a joint likelihood on reflectance and abundance values. Asour algorithm is a supervised

learning algorithm we estimate only the abundance values ina pixel and there by detect if

a particular endmember is present or not (i.e ifβm > 0, thenmth endmember is present in

the pixel). Marginalization of the Eq.(3.8) is done to convert the joint likelihood equation

to a likelihood equation on abundance values. This shown below

p(y;β) =

∫

p(y;X,β) dX (3.9)

=

∫
(

M∏

m=1

p(x
(m)
1 )

N−1∏

i=1

p(x
(m)
i+1|x

(m)
i )

)

·

(
N∏

i=1

p(yi|xi;β)

)

dX, (3.10)

While the above integral appears intractable (of sizeN ×M ), we show below that efficient

integration strategies are available using the sum-product algorithm.

3.2 The Sum-Product Algorithm

Contemporary applications often require large models complex systems involving many

hidden variables and uncertain parameters. One example is weather forecasting, which

typically uses prior information of previous weather history, temporal dependencies and
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other information to predict the weather conditions. Thesetype of problems are frequently

tackled using probabilistic graphical models and one of thewell-known algorithms that

fuses information within the graphical models is the sum-product algorithm [10] [16] [18].

The sum-product algorithm computes inferences on graphical models like Markov random

fields and Bayesian networks by passing messages along edges in the graph. These in-

ferences can be discreet or continuous in nature. Generally, the sum-product algorithm is

used because of its efficiency and exactness in finding the marginal probability of random

variables. Messages are passed both in forward and backwarddirection and the individual

marginals are calculated by accumulating the forward and backward messages coming in

to a variable node. In our algorithm, we make use of only forward going messages com-

puted by sum-product algorithm. All the forward going messages are multiplied with local

functions of variable and factor nodes. The final message at the end of the chain is the

likelihood of the chain. The sum-product algorithm is generally known to be an exact al-

gorithm on tree-structure graphs, but is only approximate for graphs with cycles.

Below we provide a general description of the sum-product algorithm, describing how

messages are computed, updated, and fused. In Sec.3.3 we specify these general rules to

the unmixing problem.

3.2.1 Formulation of messages

Because there are two types of nodes in a factor graph, the sum-product algorithm consists

of two types of messages:

1. Messages from variable nodes to factor nodes

2. Messages from factor nodes to variable nodes

The messages going from a factor node to a variable node are represented asmfx and

messages from variable node to factor node are represented as mxf . Factor nodes are
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represented asf and variable nodes are represented asx.

Message from variable node to factor node:

Variable nodes fuse the information of their local functionwith incoming messages from

neighboring factor nodes. In this presentation, we assume no local function for the variable

nodes. Using message passing update rules, the output message of a variable node is the

product of the input messages from all neighboring factor nodes except the destination

factor [9] [16]

mxf (x) =
∏

f ′∈N(x)\f

mf ′x(x), (3.11)

whereN(x) \ f denotes the set of all neighboring factors of variablex, exceptf . For the

example graph in Fig.3.3, the outgoing message to factorfg is

mxtfg(xt) = mfjxt
(xt) mfkxt

(xt) (3.12)

Figure 3.3: Message going from variable node to factor node
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Message from factor node to variable node:

The second type of message originates from factor nodes and has variable nodes as its des-

tination. Factor-to-variable messages transform incomming messages about neighboring

variables into outgoing information describing the destination node. The outgoing mes-

sage from factorf to variablex takes the form [16] [9]

mfx(x) =

∫

X−

f(X)
∏

x′∈X−

mx′f (x
′) dX−, (3.13)

whereX = N(f) denotes the set of neighboring variables off in the factor graph, and

X− = X \ x excludes the destination variable from this set.

A three-variable example is shown in Fig.3.4. The factor nodefs here is a compatibil-

ity function governing the relation between{xt, xq, xg} and has its own local function(fs)

defined by some prior knowledge about{xt, xq, xg}. The output message is the product of

non-destination input messages from variable nodes neighboring factorfs. As the product

of all the messages is a multivariate function, integrationis applied on all variables other

thanxg. In this case integration is done onxt andxq, that is, the multivariate function is

marginalized such that the output function only depends onxg

mfsxg
(xg) =

∫

xt

∫

xq

mxtfs(xt) mxqfs(xq) fs(xt, xq, xg) dxt dxq (3.14)

Marginalization:

Lastly, the factor-to-variable messages can be used to compute marginal distributions over

the graph. For an a cyclic graph, if the outgoing messages have been computed for each

node in the network in a round-robin fashion for at leastd times, whered is the diameter
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Figure 3.4: Message going from factor node to variable node

of the graph, then the marginal distribution of a variablex may be exactly computed as

p(x) =
∏

f∈N(x)

mfx(x). (3.15)

In the unmixing problem, from (3.8), we havep(y,X;β) and wish to marginalize all of

the reflectances, as in (3.10). Applying the sum-product algorithm, we may use (3.15)

to compute the marginal distribution over all but reflectances at theN th wavelength, i.e

xN . This yieldsp(y,xN ;β) from which the remaining integral overxN yields the desired

marginalized likelihoodp(y;β).

3.3 Sum-product unmixing

Figure3.2 illustrates the factor graph governing Markov chain endmember variability and

linear mixing forM endmembers andN spectral bands. The drawback of this model is that

it is loopy, and as discussed earlier, the sum-product algorithm on graphs is only exact for

graphs without cycles. To address this issue, we retune our model and combine theM scalar

Markov chains into a single vector-valued Markov chain, as shown in Figure3.5. This is
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generally termed as clustering of nodes which is done essentially to eliminate any cycles

present in the graph and this does not affect the computational complexity to calculate

messages [16]. The sum-product algorithm is now applied to the reformulated graphical

model where the messages are now multivariate functions. Inthe following section, we

derive the messages required for efficient unmixing.

Figure 3.5: Clustered Markov chain for multiple endmembers with N spectral bands

3.3.1 Derivation of Unmixing Messages

In this section, we derive the necessary unmixing messages:mxf (xi) (message going from

a variable node to factor node) andmfx(xi+1) (message going from factor node to variable

node) and show that these are each scaled Gaussian functions, parameterized by a scale

factor, mean vector, and covariance matrix.

We use the following notation in the message derivations below:

37



xi : vector representation of the reflectance at wavelengthi across

all M endmembers;xi = [x
(1)
i , . . . , x

(M)
i ]T

yi : observed pixel measurement value at theith wavelength

β : vector containing the abundance ratios of all

endmembers;β = [β1, . . . , βM ]T

α
(m)
i : correlation factor betweenx(m)

i andx(m)
i+1 of themth endmember

Ai : matrix containing correlation factors betweenxi andxi+1

Ai = diag([α(1)
i , . . . , α

(m)
i , . . . , α

(M)
i ])

Message going from variable node to factor node

Figure 3.6: Evaluation of variable-to-factor vector message for unmixing

Figure3.6 depicts a portion of the graph needed to evalute the message from a variable

nodexi to factorfi. The messagemfx(xi) entering nodexi in Figure3.6 is the message
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from nodefi−1 which is a probability distribution onxi

mfx(xi) ∝ N̄ (xi;m
(i)
µ ,m

(i)
P ), (3.16)

wherem(i)
µ ,m

(i)
P are the mean and inverse covariance (precision matrix) ofmfx(xi). The

second message is from the factor nodeφi and the factor function of this node isp(yi|xi)

which is the observed pixel measurement. From Figure3.6, we see that 2 messages act

as input to nodexi, the outgoing message of variable nodexi is computed using the sum-

product rule given by Eq.(3.12):

mxf (xi) = mfx(xi)p(yi|xi) (3.17)

= N̄ (xi;m
(i)
µ ,m

(i)
P )N̄ (yi;β

Txi, pǫ) (3.18)

Expanding the Gaussians, we have

mxf (xi) = (2π)(−M/2)det(m
(i)
P )1/2

︸ ︷︷ ︸

k̃0i

exp

[

−
1

2
(xi −m(i)

µ )Tm
(i)
P (xi −m(i)

µ )

]

(3.19)

(2π)−1/2(pǫ)
1/2

︸ ︷︷ ︸

k̃1i

exp

[

−
1

2
(yi − βTxi)

Tpǫ(yi − βTxi)

]

and

mxf (xi) = k̃0
i k̃

1
i exp

[

−
1

2
xT
i (m

(i)
P + βpǫβ

T )xi − 2(m(i)
µ

T
m

(i)
P + yTi pǫβ

T )xi

]

exp

[

−
1

2
(m(i)

µ

T
m

(i)
P m(i)

µ + yTi pǫyi)

]

.

(3.20)
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Using the following identity ([15];Sec.8.1.6)

exp

[

−
1

2
xTAx+ cTx

]

= exp

[

−
1

2
(x−A−1c)TA(x−A−1c) +

1

2
cTA−1c

]

,

(3.21)

we may rearranging Eq.(3.20) as

mxf (xi) = k̃0
i k̃

1
i exp

[

−
1

2
(m(i)

µ

−T
m

(i)
P m(i)

µ + yTi pǫyi − bT (m̃
(i)
P )−1b)

]

︸ ︷︷ ︸

k̃2i

(3.22)

exp

[

−
1

2
(xi − (m̃

(i)
P )−1b)Tm̃

(i)
P (xi − (m̃

(i)
P )−1b)

]

.

In the above equation,̃m(i)
P andbT are

m̃
(i)
P = m(i)

µ + βpǫβ
T (3.23)

bT = m(i)
µ

T
m

(i)
P + yTi pǫβ

T . (3.24)

To represent the equation as a Gaussian distribution we multiply and divide by the term

(2π)M/2det(m̃
(i)
P )−1/2, yielding

mxf (xi) = k̃0
i k̃

1
i k̃

2
i (2π)M/2det(m̃

(i)
P )−1/2

︸ ︷︷ ︸

k̃3i

N
[
xi; m̃

(i)
µ , m̃

(i)
P

]
. (3.25)

The mean vector̃m(i)
µ is

m̃(i)
µ = (m̃

(i)
P )−1b, (3.26)
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Figure 3.7: Evaluation of factor-to-variable vector message for unmixing

and the final message is the following scaled multivariate Gaussian

mxf (xi) = K̃i N̄
(
xi; m̃

(i)
µ , m̃

(i)
P

)
, (3.27)

with meanm̃(i)
µ , precisionm̃(i)

P , and scaling constant̃Ki = k̃0
i k̃

1
i k̃

2
i k̃

3
i .

Message going from factor node to variable node

The second stage of the derivation is for messages of the formmfx(xi+1): from a factor

nodefi to a variable nodexi. Figure3.7depicts the portion of the graph needed to evaluate

these messages. The factor nodefi has a factor function that models the spectral correlation

of the reflectances between spectral bands{i, i+1} for all theM endmembers in the chain

and the mathematical representation of this function is theconditional PDF ofxi+1 given

xi

fi = p(xi+1|xi) = N̄ (xi+1;Aixi + µi,Pi), (3.28)

whereµi andPi are mean vector precision matrix of the transition noise at the factor node

fi.

The incoming message to nodefi is mxf (xi) from xi. The outgoing message at node
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fi, mfx(xi+1), is derived below using (3.28) and (3.27), and the message passing rules

described in Section3.2.1. From (3.13), we have

mfx(xi+1) =

∫

mfx(xi) p(xi+1|xi) dxi (3.29)

= K̃i

∫

N̄ (xi; m̃
(i)
µ , m̃

(i)
P ) N̄ (xi+1;Aixi + µi,Pi) dxi. (3.30)

Expanding the Gaussians, we obtain

mfx(xi+1) = K̃i 2π
−N/2 det(m̃

(i)
P )1/2

︸ ︷︷ ︸

k0i+1

∫

exp

[

−
1

2
(xi − m̃(i)

µ )Tm̃
(i)
P (xi − m̃(i)

µ )

]

2π−M/2 det(Pi)
1/2

︸ ︷︷ ︸

k1i+1

exp

[

−
1

2
(xi+1 −Aixi − µi)

TPi(xi+1 −Aixi − µi)

]

dxi

(3.31)

= K̃i k
0
i+1 k

1
i+1

∫

exp

[

−
1

2

(

(xi)
Tm̃

(i)
P (xi)− 2(m̃(i)

µ )Tm̃
(i)
P (xi)

+ (m̃(i)
µ )Tm̃

(i)
P (m̃(i)

µ ) + (xi+1)
TPi(xi+1)− 2(xi+1)

TPiAi(xi)− 2µT
i Pixi+1+

2µT
i PiAixi + xT

i A
T
i PiAixi + µT

i Piµi

)]

dxi

(3.32)

= K̃i k
0
i+1 k

1
i+1 exp

[
−1

2

[
(xi+1)

TPixi+1 − 2µT
i Pixi+1

]
]

exp

[
−1

2
[(m̃(i)

µ )Tm̃
(i)
P m̃(i)

µ + µT
i Piµi]

] ∫

exp

[
−1

2

(

(xi)
T (m̃

(i)
P +AT

i PiAi)
︸ ︷︷ ︸

R

xi−

2
(

(m̃(i)
µ )Tm̃

(i)
P + (xi+1)

TPiAi − µT
i PiAi

︸ ︷︷ ︸

sT

)

xi

)]

dxi.

(3.33)
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Making the substitutionsR andsT indicated in (3.33), we have

mfx(xi+1) = K̃i k
0
i+1 k

1
i+1 exp

[
−1

2

[
(xi+1)

TPixi+1 − 2µT
i Pixi+1

]
]

exp

[
−1

2

[
(m̃(i)

µ )Tm̃
(i)
P m̃(i)

µ + µT
i Piµi

]
]

∫

exp

[
−1

2

(
(xi)

TRxi − 2sTxi

)
]

dxi

(3.34)

Using the following identity ([15];Sec. 8.1.1)

∫

exp

[

−
1

2
xTCx+ qTx

]

dx =
√

(det(2π(C)−1) exp

[
1

2
qTC−1q

]

, (3.35)

We integrate the quadratic form in (3.34) to obtain

mfx(xi+1) = K̃i k
0
i+1 · k

1
i+1

√

det(2πR−1) exp

[
sTR−1s

2

]

exp

[
−1

2
[(xi+1)

TPixi+1

− 2µT
i Pixi+1]

]

exp

[
−1

2
[(m̃(i)

µ )Tm̃
(i)
P m̃(i)

µ + µT
i Piµi]

]

(3.36)

= K̃i k
0
i+1 k

1
i+1

√

det(2πR−1) exp

[
1

2

[
(m̃(i)

µ )Tm̃
(i)
P + (xi+1)

TPiAi − (µi)
TPiAi

]
R−1·

[
(m̃

(i)
P )Tm̃(i)

µ +AT
i P

T
i (xi+1)−AT

i P
T
i µi

]
]

exp

[
−1

2

[
(xi+1)

TPixi+1 − 2µT
i Pixi+1

]
]

exp

[
−1

2

[
(m̃(i)

µ )Tm̃
(i)
P m̃(i)

µ + µT
i Piµi

]
]

(3.37)
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= K̃ik
0
i+1k

1
i+1

√

det(2πR−1) exp

[
1

2

(

(m̃(i)
µ )Tm̃

(i)
P R−1(m̃

(i)
P )Tm̃(i)

µ + (m̃(i)
µ )Tm̃

(i)
P R−1

AT
i P

T
i xi+1 − (m̃(i)

µ )Tm̃
(i)
P R−1AT

i P
T
i µi + (xi+1)

TPiAiR
−1(m̃

(i)
P )Tm̃(i)

µ

+ (xi+1)
TPiAiR

−1AT
i P

T
i xi+1 − (xi+1)

TPiAiR
−1AT

i P
T
i µi − µT

i PiAiR
−1(m̃

(i)
P )T

(m̃(i)
µ )− µT

i PtAiR
−1AT

i P
T
i xi+1 + µT

i PiAiR
−1AT

i P
T
i µi

)]

.

(3.38)

From here on we focus on rearranging the form of (3.38) into a Gaussian equation, as the

integration of a Gaussian with respect toxi marginalizes the multivariate function and the

left over terms represent a Gaussian distribution onxi+1. From (3.38),

mfx(xi+1) = K̃i k
0
i+1 k

1
i+1

√

det(2πR−1) exp

[

−
1

2
xT
i+1(Pi − PiAiR

−1AT
i (Pi)

T )xi+1

+
1

2

(

2(m̃(i)
µ )Tm̃

(i)
P R−1AT

i P
T
i − 2µT

i PiAiR
−1AT

i P
T
i + 2µT

i Pi

)

xi+1

]

exp

[

−
1

2

(

(m̃(i)
µ )T

(

m̃
(i)
P − m̃

(i)
P R−1(m̃

(i)
P )T

)

m̃(i)
µ + µT

i

(

Pi − PiAiR
−1AT

i P
T
i

)

µi

)]

exp
[1

2
(−2µT

i PiAiR
−1(m̃

(i)
P )Tm̃(i)

µ )
]

.

(3.39)

Next step is to rearrange the above equation into a squared form and apply the identity

shown in Eq.(3.21) [15], so that Eq.(3.39) looks like a Gaussian in terms ofxi+1:

mfx(xi+1) = K̃i k
0
i+1 k

1
i+1

√

det(2πR−1) exp

[

−
1

2
xT
i+1 (Pi − PiAiR

−1AT
i (Pi)

T )
︸ ︷︷ ︸

m
(i+1)
P

xi+1

+
(

(m̃(i)
µ )Tm̃

(i)
P R−1AT

i P
T
i + µT

i Pi(1−AiR
−1AT

i P
T
i )

︸ ︷︷ ︸

hT

)

xi+1

]

exp

[

−
1

2

(

(m̃(i)
µ )T

(

m̃
(i)
P − m̃

(i)
P R−1(m̃

(i)
P )T

)

m̃(i)
µ + µT

i

(

Pi − PiAiR
−1AT

i P
T
i

)

µi

µT
i PiAiR

−1(m̃
(i)
P )Tm̃(i)

µ

)]

(3.40)
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We Assign the constantk2
i+1 to the latter part of above equation

k2
i+1 = exp

[

−
1

2

(

(m̃(i)
µ )T

(

m̃
(i)
P − m̃

(i)
P R−1(m̃

(i)
P )T

)

m̃(i)
µ + µT

i

(

Pi − PiAiR
−1

AT
i P

T
i

)

µi − µT
i PiAiR

−1(m̃
(i)
P )Tm̃(i)

µ

)]

(3.41)

and rewrite (3.40) in terms ofm(i+1)
P , i.e Precision ofmfx(xi+1), and the pseudo constant

hT to give

mfx(xi+1) = K̃ k0
i+1 k

1
i+1 k

2
i+1

√

det(2πR−1) exp
[

−
1

2
xT
i+1m

(i+1)
P xi+1 + hTxi+1

]

(3.42)

Multiplying and dividing the above equation by

(

2πM/2det(m
(i+1)
P )−1/2

)

, we obtain

mfx(xi+1) =K̃ k0
i+1 k

1
i+1 k

2
i+1

√

det(2πR−1) exp
[

−
1

2
xT
i+1m

(i+1)
P xi+1 + hTxi+1

]

(

2πM/2det(m
(i+1)
P )−1/2

) (

2πM/2det(m
(i+1)
P )−1/2

)−1

(3.43)

AsR is anM ×M matrix,
√

det(2πR−1) is written as2πM/2
√

det(R−1), and

mfx(xi+1) =K̃ k0
i+1 k

1
i+1 k

2
i+1 2πM/2

√

det(R−1) 2πM/2det(m
(i+1)
P )−1/2

︸ ︷︷ ︸

k3i+1

2π−M/2det(m
(i+1)
P )1/2exp

[

−
1

2
xT
i+1m

(i+1)
P xi+1 + hTxi+1

]

(3.44)
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Rearranging (3.44) using the identity (3.21), we have

mfx(xi+1) =K̃ k0
i+1 k

1
i+1 k

2
i+1 k

3
i+1 exp

[1

2
hT (m

(i+1)
P )−1h

]

︸ ︷︷ ︸

k4i+1

2π−M/2 det(m
(i+1)
P )−1/2

exp
[

−
1

2

(

xi+1 − (m
(i+1)
P )−1h

)T

m
(i+1)
P

(

xi+1 − (m
(i+1)
P )−1h

)]

(3.45)

The above equation represents a Gaussian distribution in vector form with meanm(i+1)
µ

and precisionm(i+1)
P . This is concisely represented as

mfx(xi+1) = K̃ k0
i+1 k

1
i+1 k

2
i+1 k

3
i+1 k

4
i+1

︸ ︷︷ ︸

Ki+1

N̄
(

xi+1;m
(i+1)
µ ,m

(i+1)
P

)

, (3.46)

where precision matrixm(i+1)
P and mean vectorm(i+1)

µ are

m
(i+1)
P = Pi − PiAR−1ATP T

i (3.47)

m(i+1)
µ = (m

(i+1)
P )−1 h (3.48)

hT = (m̃(i)
µ )Tm̃

(i)
P R−1ATP T

t + µT
i Pi(1−AR−1ATP T

i ) (3.49)

Finally, concatinating the constants as in (3.46), the outgoing message is given as a scaled

Gaussian

mfx(xi+1) = Ki+1 N̄
(

xi+1;m
(i+1)
µ ,m

(i+1)
P

)

(3.50)

This derivation of the message between a factor node and variable node was generic and

may be applied to any factor nodei to compute messages on Markov chains of any length

N .

The likelihood of the chain shown in Figure3.5 is found by determining the last mes-
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sage coming out of the chain, which would be a Gaussian distribution in terms ofxN . As

proposed in Eq.((3.10)), we marginalize out the reflectance variables, so that thelikelihood

does not contain any reflectance variables. The likelihood equation for the chain becomes

p(y;β) =

∫

mxf (xN)dxN (3.51)

In the above equation, the integration of the messagemxf (xN) leads to a residual constant

of integration which is the desired likelihood of the chain.

3.4 Maximum likelihood estimator for abundance ratios

From the previous section, we are able to apply the sum-product algorithm in order to

efficiently evaluate the likelihoodp(y;β) of the abundance ratios. From here, we may

optimize the likelihood expression in order to obtain a maximum likelihood estimatêβ of

the abundance ratios

β̂ = arg max
β

p(y;β) s.t. 0 ≤ βm ≤ 1,
∑

m

βm = 1 (3.52)

This non-linear optimization may be performed using any favored constrained optimiza-

tion routine. In our work, we used an interior point algorithm implemented by Matlab’s

fmincon function. The sum-to-one constraint was achieved via a linear equality con-

straint on the parameter vector as1
T
Mβ = 1, where1M is vector ofM ones.

3.5 Computational complexity

Computational complexity of evaluating the likelihood plays a key role in judging the ef-

ficiency of unmixing algorithms. Because the brute force algorithm in Section2.4.2 is
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the only other algorithm that supports realistic correlation effects between endmember

elements, we compare the complexity of the proposed sum-product unmixing algorithm

against brute force.

The brute force unmxing algorithm has a computational complexity ofO(N3) because the

likelihood equation shown in (2.32) requires the computation of an inverse and determinant

of the covariance matrix of the pixel spectra, which is of sizeN × N . The computational

complexity of both operations for anN × N matrix isO(N3), yielding an overall com-

plexity that is alsoO(N3).

Our proposed algorithm, sum-product unmixing (SPUX) has a computational complexity

of O(M3N). As the likelihood evaluation involves computing messagesat each variable

node and factor node along the chain, the total computational cost can be broken down into

2 parts, the computational cost of messagesmfx andmxf . Computation of the message

mfx is ofO(M3), this is because while calculating the mean ofmfx computing the inverse

precision matrix ofmfx is needed, this is shown in Eq.(3.26). As the precision matrix is

of sizeM × M , the complexity for inverting it isO(M3). This message is computedN

times as there areN suchmfx messages in a chain of lengthN , hence the computational

complexity isO(M3N). Similarly the complexity involved in calculating the messagemxf

isO(M3), this is because to calculate the mean ofmxf the inverse precision matrix of tran-

sition noise and the inverse precision matrix ofmxf are needed. Both of these matrices are

of sizeM × M and thus the computational complexity to invert these precision matrices

is O(2M3). The messagemxf is calculatedN times along the chain so the computational

complexity for calculatingN mxf message isO(2M3N). Neglecting the constant2, the

overall computational complexity isO(M3N). As both the messages haveO(M3N) com-

plexity, the complexity of finding the likelihood of the chain isO(M3N).
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Compared to the brute force unmixing algorithm, we have reduced the computational im-

pact from the number of spectral bands fromN3 to N , i.e the spectral resolution of a

hyperspectral sensor only imposes a linear impact the proposed algorithm’s computational

complexity—but this is at the cost of increasing the computational cost associated with the

number of endmembers captured in an pixel. Since generallyN ≫ M , the sum-product

unmixing algorithm represents a highly accelerated methodto perform unmixing compared

to other unmixing algorithms.
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Chapter 4: Results and Analysis

In this chapter we demonstrate the unmixing performance of our proposed algorithm and

empirically evaluate the computational time required to estimate abundance ratios. Since

the brute force algorithm presented in Section2.4.2is the only other algorithm supporting

realistic correlation effects between endmember elements, we benchmark our performance

against this method.

4.1 Dataset

We use endmember reflectances from ASTER spectral library provided by NASA’s Jet

Propulsion Lab [2] which is a collaboration of three other spectral libraries( The John

Hopkins University (JHU) Spectral Library, the Jet Propulsion Laboratory (JPL) Spectral

Library, and the United States Geological Survey (USGS) ). From this library we selected

a subset of materials that had at leastN = 128 spectral samples in the range0.4µm −

1µm and at least 10 sample reflectances from which we could estimate the Markov chain

parameters{αi, µi, σ
2
i } and the Gaussian parameters of meanµ(m) and covarianceC(m).

This yielded three materials: soil, borax, and concrete. Toperform experiments on mixed

data, endmembers were resampled toN = 256 spectral samples and mixed pixels were

synthesized using Equations (2.26), (2.27), and (2.28).
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4.2 Unmixing Performance

4.2.1 Abundance Histograms

Here we compare the empirical distribution of abundance estimates produced by sum-

product unmixing and brute force unmixing. Fixing the true abundance values asβ(soil) =

0.5, β(concrete) = 0.1 andβ(borax) = 0.4, we then simulated 1000 mixed pixel mea-

surements as described above. Applying both algorithms to this dataset, we generate 1000

abundance estimates for each material—for each algorithm.Histograms of these results

are shown below.
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Figure 4.1: Histogram of abundance estimates for Borax as an endmember
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Figure 4.2: Histogram of abundance estimates for Concrete asan endmember
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Figure 4.3: Histogram of abundance estimates for Soil as an endmember
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We make two observations from the histogram results. First,the estimates for both algo-

rithms are roughly evenly distributed on both sides of the true abundance value (shown by

the red vertical line), indicating approximate unbiasedness. Second, and more importantly,

the sum-product results appear nearly identical to the brute force results, which are known

to be MLE-optimal.

4.2.2 Root Mean Square Error vs Noise level

In this section we evaluate the root mean square error (RMSE) of abundance estimates

β̂ as a function of the standard deviation of additive white Gaussian noise (AWGN). As

reflectance values are between[0, 1], we vary standard deviationσ of noise on the same

range of that of reflectances. The true abundance values usedin creating the synthetic

mixed pixels wereβ(Borax) = 0.4,β(Concrete) = 0.1 andβ(Soil) = 0.5. For each value of

σ we generated1000 mixed pixels and empirically evaluated the RMSE from the associated

estimates. These results are shown in Figure4.4. It can be seen from the plot that the errors

between the algorithms are similar for small values ofσ, but as noise increases, the gap

between the RMSE curves increases—indicating better performance for our sum-product

unmixing algorithm compared to the brute force algorithm.

4.3 Computation Time

The primary motivation of this work was to develop an accelerated unmixing algorithm, ac-

commodating endmember variability and correlation, that remains computationally tractable

for large spectral sampling rates. Here we quantify the run-time of our sum-product algo-

rithm and compare it to the brute force approach. To this end,we artificially increased the

spectral sample rate of the ASTER data by interpolating the given samples—creating sam-

ple rates ranging fromN = 128 to N = 8192. Using this data, we empirically measured
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the average time required to evaluate the likelihood function for each method. The results

are show in Figure4.5.

From the figure, we observe that when the number of spectral samples exceedsN ≈ 500,

the sum-produce unmixing algorithm is faster. The theoretical timing predictions in Sec-

tion 3.5 are corroborated by the figure. The performance gap increases dramatically with

N , and atN = 8192 the sum-product algorithm is nearly three orders of magnitude faster

than the brute force approach.
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Figure 4.5: Computation time for evaluating abundance likelihoods. The proposed sum-
product unmixing algorithm is orders of magnitude faster for largeN (ultraspectral data).
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Chapter 5: Conclusions

Advances in sensor technology are pushing remote spectrographic methods to ever-higher

spectral resolutions. With current technology transitioning from the hyperspectral realm

(hundreds of wavelengths) to the ultraspectra realm (thousands of wavelengths), the vol-

ume of data generated by these sensors is eclipsing our ability perform statistical unmixing

with models that support endmember variability and realistic inter-wavelength correlation

properties. In this thesis, we developed a new statistical unmixing method to address this

computational bottleneck. Our approach utilized Markov chain models to capture end-

member variability, and by formulating the unmixing problem as an inference task on a

probabilistic factor graph, we where able to employ the sum-product algorithm for efficient

inference. ForN -band data, traditional methods have computational complexity O(N3),

whereas the message-passing method developed only has complexity O(NM3) that is lin-

ear in the number of bands. Since the numberM of endmembers considered is generally

much less thanN , this algorithm represents a significant computational savings. Examples

demonstrated that the new algorithm had estimation error rates consistent with optimal

brute force methods, but that it executed three orders of magnitude faster for large spectral

sample ratesN .

In future work we will extend the method to non-linear mixingmodels by generalizing the

observation factors{φi} in Figure3.2. This approach will maintain most of the message-

passing infrastructure developed in this thesis and enablethe first consideration of endmem-
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ber variability in mixing environments that are non-linear. Following [26], future work will

also consider richer modeling parametrizations, including, e.g., background noise param-

eters and abundance priors, that can be jointly estimated inan expectation maximization

(EM) context. While current methods restrict this approach to unrealistic endmember mod-

els with inter-band independence assumptions, the message-passing methods developed in

this thesis will enable EM methods to be applied to more realistic endmember correlation

structures captured by the Markov chain models proposed in this thesis.
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Appendix: Notation

In this appendix, we summarize some of the notation used throughout the thesis.

v bold lowercase variables denote column vectors

A bold uppercase variables denote matricies

I identity matrix

det(A) matrix determinant

AT matrix transpose

p(x) probability density function onx

x
(m)
i reflectance of endmemberm at ith wavelength

x(m) reflectance vector of themth endmember acrossN wavelengths

xi reflectance vector atith wavelength forM endmembers

µ(m) mean vector of endmemberm

C(m) covariance matrix of endmemberm

N (x;µ,C) Gaussian distribution with meanµ and

covariance matrixC over variablex

N̄ (x;µ,P ) Gaussian distribution with meanµ and

precision matrixP over variablex

59



µi mean vector of transition noise

Pi precision matrix of transition noise

m
(i)
µ mean vector of the incoming message at wavelengthi

m̃
(i)
µ mean vector of the outgoing message at wavelengthi

m
(i)
P precision matrix of the incoming message at wavelengthi

m̃
(i)
P precision matrix of the outgoing message at wavelengthi
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