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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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ABSTRACT

This paper introduces a framework based on the LMS algo-

rithm for sequential deconvolution of hyperspectral images

acquired by pushbroom imaging systems. Considering a se-

quential model of image blurring phenomenon, we derive

a sliding-block regularized LMS algorithm with spatial and

spectral regularizers. The performance of the algorithm is

evaluated using real hyperspectral data. The role of the hyper-

parameters is also discussed.

Index Terms— Hyperspectral image, online deconvolu-

tion, LMS

1. INTRODUCTION

Hyperspectral imaging has received considerable attention in

the last decade as it combines the power of digital imag-

ing and spectroscopy. Every pixel in a hyperspectral image

provides local spectral information about a scene of interest

across a large number of contiguous bands. This information

can be used to characterize objects with great precision and

detail in a number of areas, including agricultural monitor-

ing, industrial inspection, and defense. The core characteris-

tics of hyperspectral images raise new data processing issues

ranging from image restoration to pattern recognition [1, 2].

Several sensing techniques have been developed for hy-

perspectral imaging. They can be categorized into four main

groups [3, 4]: whiskbroom (point scan), pushbroom (line

scan), tunable filter (wavelength scan), and snapshot. Figure 1

depicts schematically how a hyperspectral image is captured

by a pushbroom imager, and how the spatial-spectral arrays

are stacked within a hyperspectral image datacube. With the

pushbroom technique, pixel spectra are sensed line-by-line at

each time instant. The scene is typically scanned by moving

the imager or its field of view across the scene. Pushbroom

systems are used in many areas such as food safety [5,6], geo-

referencing [7] and material sorting [8, 9].

The aim of this paper is to address the problem of on-

line (sequential) deconvolution of hyperspectral images pro-
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Project, the Conseil Régional de Lorraine and the GDR ISIS.

vided by pushbroom imaging systems such as those described

in [3, 10]. Image deconvolution deals with restoring an orig-

inal image from blurred and, generally, noisy observations.

Multichannel images restoration was carried out with Wiener

methods in [11, 12]. Other strategies such as [13–16] were

also introduced, but only in an offline setting.

Time instant k
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N
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Fig. 1: Data acquisition by a pushbroom imaging system

Consider a hyperspectral image Y ∈ R
N×P×K collected

by a pushbroom hyperspectral imaging system, where N , P ,

and K denote the number of spatial, spectral and time mea-

surements, respectively. The samples to be imaged are carried

by a conveyor moving at constant speed. The hyperspectral

image is then acquired slice by slice, each of which is de-

noted by Yk ∈ R
N×P . The size of Y increases with k which

can possibly grow to infinity. The acquisition parameters are

the spatial sampling ∆ and integration time T . We consider

situations where the spatial sampling ∆ is smaller than the

support of the point spread function, which results in a spatial

blurring of the hyperspectral image, and the integration time

is small (for fast scanning) yielding a low signal to noise ra-

tio. This motivates the derivation of sequential deconvolution

algorithms that are able to restore, in an online way, an hy-

perspectral image X from a noisy and blurred observation Y.

The main contribution of this work is to introduce an LMS

framework for sequential deconvolution of hyperspectral im-

ages. While our algorithm operates in the spirit of LMS-based

algorithms used, for instance, for adaptive system identifi-

cation [17–19] and adaptive superresolution image restora-

tion [20,21], sequential image deconvolution of hyperspectral

images based on the LMS has never been reported in the lit-

erature. Accounting for the specificity of the acquisition pro-

cess, we propose a sliding-block LMS algorithm that allows

to sequentially restore the hyperspectral image of interest with



a delay Q. We also introduce regularization terms promoting

the restoration of piecewise constant objects on a background

which should be zero-valued.

2. BLURRING AND CAUSALITY ISSUES

We shall now discuss issues related to the causality of convo-

lution kernel and associated estimates. Following [15], hyper-

spectral image blurring can be seen as P simultaneous spatial

convolutions. For each wavelength λp, the blurred spatial im-

age Yp ∈ R
N×K is given by the 2D convolution:

Yp = H̄p∗Xp + Zp (1)

where ∗ is the 2D convolution operator, Xp ∈ R
N×K is the

image to restore, H̄p ∈ R
M×L is a convolution kernel (filter),

and Zp is a noise supposed to be additive and i.i.d. We first

derive a sequential causal formulation of model (1). Without

loss of generality, we shall focus on the sequential model for

2D images, by omitting the dependence with respect to p. The

image Y, collected in an online way, can be represented as a

sequence of vectors yk := [y1,k, . . . , yN,k]
⊤, k = 1, . . . ,K ,

where ⊤ denotes the transpose of a matrix. We shall use

the same notation for X. We assume a finite length blurring

kernel of size L along the time dimension, centered around

0 which means that past and future values of xk contribute

to the observation yk. In order to make the blurring kernel

causal1, it has to be shifted by (L − 1)/2, which means that

the observations needs to be delayed by (L − 1)/2 samples,

that is, ỹk = yk−(L−1)/2. Writing H̄ = [hL, . . . ,h1] with

hℓ = [hM,ℓ, . . . , h1,ℓ]
⊤

, model (1) can be expressed as:

ỹk = yk−(L−1)/2 =

L
∑

ℓ=1

Hℓxk−ℓ+1 + zk (2)

where zk is a zero-mean measurement noise, statistically

independent of the other signals. Hℓ is the N × N
Toeplitz matrix with first column and first row given by

[h1,ℓ, . . . , hM,ℓ, 0, . . . , 0] and [h1,ℓ, 0, . . . , 0], respectively.

Relation (2) introduces a delay in both time dimension

and spatial dimension because the filter is made causal

along these two dimensions. Another consequence of

causality issues concerns the estimation process of xk.

First, xk is involved in past and future observations

(yk−(L−1)/2, . . . ,yk, . . . ,yk+(L−1)/2). Secondly, optimally

estimating xk requires all the past and future estimations

(. . . , x̂k−2, x̂k−1, x̂k+1, x̂k+2, . . .), which precludes the es-

timation of xk in a sequential manner. To address these is-

sues, we recommend to produce the estimates x̂k with a de-

lay Q. This means that we shall estimate xk−Q+1 given

(yk+(L−1)/2−Q+1, . . . ,yk+(L−1)/2), coarse posterior esti-

mates (x̂k, x̂k−1, . . . , x̂k−Q+2) refined as k increases, and

past estimates (x̂k−Q, x̂k−Q−1, . . . , x̂k−Q−L+2). This is the

1For simplicity, L is assumed to be odd.

key idea of the sliding-block LMS deconvolution algorithm

developed in the next section.

3. ONLINE IMAGE DECONVOLUTION

We shall first address the adaptive deconvolution problem in

the case of 2D images. Then the proposed algorithm will be

extended to hyperspectral images. Consider the problem of

estimating xk−Q+1 in a sequential manner based on obser-

vations (yk+(L−1)/2−Q+1, . . . ,yk+(L−1)/2) or, equivalently,

on the delayed ones (ỹk−Q+1, . . . , ỹk). In what follows, to

simplify notations, yk refers to the delayed observation ỹk .

To account for their dependencies on xk, . . . ,xk−Q−L+2, we

consider the following criterion:

J (xk, . . . ,xk−Q−L+2) =

Q
∑

q=1

E

∥

∥

∥

∥

∥

yk−q+1 −

L
∑

ℓ=1

Hℓxk−q−ℓ+2

∥

∥

∥

∥

∥

2

+ ηs

Q
∑

q=1

‖DNxk−q+1‖1 + ηt

Q−1
∑

q=1

‖xk−q+1 − xk−q‖1

+ ηz

Q
∑

q=1

‖xk−q+1‖1 (3)

where ‖ · ‖1 =
∑N

n=1 |{·}n| denotes the ℓ1-norm, and {·}n
stands for the n-th entry of a vector. Define the first-order

derivative filter DN as an (N − 1)×N Toeplitz matrix with

first column [1, 0, . . . , 0] and first row [1,−1, 0, . . . , 0]. The

regularizers ‖DNxk−q+1‖1 and ‖xk−q+1 −xk−q‖1 promote

the restoration of piecewise constant patterns along the spa-

tial and time dimensions, respectively, and the zero-attracting

regularizer ‖xk−q+1‖1 promotes the removal of the conveyor

background. The choice of these regularization terms is thus

motivated by the targeted application, namely, the inspection

of objects put on the conveyor belt. At a given wavelength, the

response of the conveyor after background removal is close to

zero while that of the objects is supposed to be piecewise con-

stant. The strength of the first derivative regularizers along

spatial and time dimensions are controlled by ηs ≥ 0 and

ηt ≥ 0, respectively. The strength of the zero-attracting regu-

larizer is controlled by ηz ≥ 0.

3.1. Sliding-block regularized LMS (SBR-LMS)

We shall now devise the sliding-block regularized LMS algo-

rithm. Consider vectorized data:

x′

k , col{xk−q+1}
Q+L−1
q=1 , y′

k , col{yk−q+1}
Q+L−1
q=1



where col{·} stacks its vector arguments on top of each other.

A subgradient of (3) is given by:

∇J (x′

k) ,













∂J

∂xk
...

∂J

∂xk−Q−L+2


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





=
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...

∂J
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0N×1

...
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
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











(4)

where 0I×J denotes the I × J zero matrix. Approximating

the subgradient in (4) by its instantaneous value yields:

∇J (x′

k) =− 2Φ (y′

k −Gx′

k) + ηsD
⊤

s sign(Dsx
′

k)

+ ηtD
⊤

t sign(Dtx
′

k) + ηzsign(x
′

k)
(5)

where Φ and G are matrices of size (Q + L − 1)N × (Q +
L− 1)N . Matrix Φ is given by:

Φ ,











H⊤
1 0
...

. . . 0QN×(L−1)N

H⊤

Q · · · H⊤
1

0(L−1)N×QN 0(L−1)N×(L−1)N











,

with Hℓ = 0N×N for ℓ > L, and G a block-Toeplitz matrix

whose first block column is [H1,0N×N , . . . ,0N×N ] and first

block row is [H1, . . . ,HL,0N×N , . . . ,0N×N ]. The first-

order derivative filters for spatial and time dimensions are:

Ds , [IQ ⊗DN 0Q(N−1)×(L−1)N ]

Dt , [DQ ⊗ IN 0(Q−1)N×(L−1)N ],

where ⊗ stands for the Kronecker product and IJ denotes

the J × J identity matrix. The sign function is defined as

sign(x) = 0 for x = 0, and sign(x) = x/|x| otherwise.

Finally, the SBR-LMS algorithm for image deconvolution is

given by:

x̂′

k+1 = Ωx̂′

k −
µ

2
∇J (x̂′

k)

= Ωx̂′

k + µΦ (y′

k −Gx̂′

k)− ρsD
⊤

s sign(Dsx̂
′

k),

− ρtD
⊤

t sign(Dtx̂
′

k)− ρzsign(x̂
′

k) (6)

where µ is a step size parameter that controls the convergence

rate and the algorithm stability, and

Ω ,









I(Q−1)N 0 0 0(Q−1)N×N

0 IN 0 0N×N

0 IN 0 0N×N

0 0 I(L−2)N 0(L−2)N×N









,

ρs = µηs/2, ρt = µηt/2 and ρz = µηz/2. The final re-

sult xk−Q+2 is obtained by selecting the Q-th block of vector

x̂′

k+1, that is,

x̂k−Q+2 = Sx̂′

k+1 (7)

where S , [0N×(Q−1)N , IN ,0N×(L−1)N ]. When Q = 1
and ρs = ρt = 0, algorithm (6) reduces to the Zero-Attracting

LMS (ZA-LMS) algorithm proposed in [18] for sparse system

identification.

3.2. Online hyperspectral image deconvolution

Consider now the problem of 3D hyperspectral image decon-

volution, which aims at restoring sequentially spatial-spectral

arrays Xk ∈ R
N×P . In an equivalent way, we shall consider

vectorized data

x′

k , col
{

x′

k
p}P

p=1
, y′

k , col
{

y′

k
p}P

p=1

where superscript p refers to the spectral band. Adding a spec-

tral regularization term to promote spectral smoothness of the

image leads to the criterion:

C(x′

k) =

P
∑

p=1

J (x′p
k ) + ηλ‖Λλx

′

k‖
2 (8)

whereΛλ , (diag(c1 . . . , cP−1)DP )⊗I(Q+L−1)N is a first-

order filtering operator along the spectral dimension weighted

by the coefficients {cp}
P−1
p=1 . The parameter ηλ controls the

strength of the spectral smoothness penalty term. Finally, the

SBR-LMS algorithm for hyperspectral image deconvolution

can be expressed as:

x̂′

k+1 = Γx̂′

k −
µ

2
∇C(x̂′

k)

= Γx̂′

k + µΨ (y′

k −Υx̂′

k)− ρsΛ
⊤

s sign(Λsx̂
′

k)

− ρtΛ
⊤

t sign(Λtx̂
′

k)− ρzsign(x̂
′

k)

− µηλΛ
⊤

λΛλx̂
′

k (9)

with:

Γ , IP ⊗Ω, Ψ , blkdiag{Φp}Pp=1 a block-diagonal matrix,

Υ , blkdiag{Gp}Pp=1, Λs , IP ⊗Ds, and Λt , IP ⊗Dt.

4. EXPERIMENTAL RESULTS

The experiment described below aims at evaluating the per-

formance of the SBR-LMS algorithm on a real blurred hyper-

spectral image of size 581× 431× 16with wavelengths vary-

ing from 501.1 nm to 868.6 nm with an increment of 24.5 nm.

The conveyor background was estimated from data in an area

of size 120 × 120. It was then subtracted from the real im-

age. Objects on the background were four pieces of wood, a

piece of paper-box cover and a piece of metal. The convolu-

tion filter was estimated from data to be a Gaussian kernel of

size 21 × 21. Its full width at half-maximum was set to 10
pixels. To avoid the storage of matrix Hℓ, convolution was

performed in the frequency domain.

To show the effect of each regularizer, we first present

the deconvolution results obtained on a 2D slice of the hyper-

spectral image corresponding to the first wavelength, namely,
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(b) Estimated image by ZA-LMS

ρs = ρt = 0, ρz = 7 · 10−4
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(c) Estimated image by SBR-LMS,

ρs = ρt = ρz = 0
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(d) Estimated image by SBR-LMS,

ρs = ρt = 0, ρz = 7 · 10−4
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(e) Estimated image with SBR-LMS,

ρs = ρt = 3 · 10
−4 , ρz = 0
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(f) Estimated image with SBR-LMS,

ρs = ρt = 3 · 10
−4, ρz = 7 · 10

−4

Fig. 2: Comparaison of different regularization parameters.

501.1 nm. The original image is shown in Figure 2(a). Fig-

ure 2(b) and 2(d) compare the performance of the ZA-LMS

algorithm obtained by setting Q = 1, and the SBR-LMS algo-

rithm with block size Q = 21. The step size µ was set to 0.04
for the ZA-LMS, and to 0.01 for the SBR-LMS. We observed

that increasing the block size resulted in a faster convergence

rate. Thus, to ensure algorithm stability, the step size µ should

be small when Q is large. The image restored with ZA-LMS

in Figure 2(b) has lower noise level than the original image

but deblurring effect is limited. Better results were obtained

when we increased the block size as shown in Figure 2(d).

The effects of the regularization parameters ρs, ρt, ρz are

shown in Figures 2(d)–2(f). All these deconvolution results

were obtained with Q = 21 and µ = 0.01. They show an

increase in resolution compared to the result obtained with-

out regularization in Figure 2(c), where some oscillations can

be observed. Smaller values for µ may inhibit this oscillation

but may slow down the convergence rate and thus degrade the

deblurring efficiency. Besides, the spatial and time piecewise

constant penalties controlled by ρs and ρt led to an improved

performance as shown in Figures 2(d) and 2(f). In particu-

lar, the oscillations at object edges are reduced. Adding a

zero-attracting regularization forces the pixel intensities val-
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(a) Original hyperspectral image
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(b) Estimated image (SBR-LMS)

Fig. 3: Hyperspectral image restoration at 4 wavelengths.

ues close to zero to be exactly zero. By comparing Figure 2(e)

and 2(f), or Figure 2(c) and 2(d), we conclude that adding the

zero-attracting penalty provides better results. Finally, Fig-

ure 3 presents the deconvolution result obtained on the whole

real hyperspectral image (at 4 wavelengths due to space lim-

itation: 501.1 nm, 623.6 nm, 746.1 nm and 868.6 nm). The

coefficients cp were all set to 1. The original image is shown

in Figure 3(a). The image restored with SBR-LMS (µ = 0.01,

Q = 21, ρs = ρt = 3 · 10−4, ρz = 7 · 10−4, ηλ = 0.001)

is shown in Figure 3(b). The restored images are of better

quality from both denoising and deblurring points of view.

5. CONCLUSION

In this work, we addressed the online deconvolution prob-

lem of hyperspectral images collected by pushbroom imag-

ing systems. We discussed some issues related to the non-

causality of the model. Then, we proposed the SBR-LMS

and we evaluated its performance on real hyperspectral data.

Future works will be focused on a statistical analysis of the

convergence behavior of the SBR-LMS algorithm.
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