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ABSTRACT

This paper introduces a framework based on the LMS algo-
rithm for sequential deconvolution of hyperspectral images
acquired by pushbroom imaging systems. Considering a se-
quential model of image blurring phenomenon, we derive
a sliding-block regularized LMS algorithm with spatial and
spectral regularizers. The performance of the algorithm is
evaluated using real hyperspectral data. The role of the hyper-
parameters is also discussed.

Index Terms— Hyperspectral image, online deconvolu-
tion, LMS

1. INTRODUCTION

Hyperspectral imaging has received considerable attention in
the last decade as it combines the power of digital imag-
ing and spectroscopy. Every pixel in a hyperspectral image
provides local spectral information about a scene of interest
across a large number of contiguous bands. This information
can be used to characterize objects with great precision and
detail in a number of areas, including agricultural monitor-
ing, industrial inspection, and defense. The core characteris-
tics of hyperspectral images raise new data processing issues
ranging from image restoration to pattern recognition [1,2].

Several sensing techniques have been developed for hy-
perspectral imaging. They can be categorized into four main
groups [3, 4]: whiskbroom (point scan), pushbroom (line
scan), tunable filter (wavelength scan), and snapshot. Figure 1
depicts schematically how a hyperspectral image is captured
by a pushbroom imager, and how the spatial-spectral arrays
are stacked within a hyperspectral image datacube. With the
pushbroom technique, pixel spectra are sensed line-by-line at
each time instant. The scene is typically scanned by moving
the imager or its field of view across the scene. Pushbroom
systems are used in many areas such as food safety [5,6], geo-
referencing [7] and material sorting [8, 9].

The aim of this paper is to address the problem of on-
line (sequential) deconvolution of hyperspectral images pro-
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vided by pushbroom imaging systems such as those described
in [3, 10]. Image deconvolution deals with restoring an orig-
inal image from blurred and, generally, noisy observations.
Multichannel images restoration was carried out with Wiener
methods in [11, 12]. Other strategies such as [13-16] were
also introduced, but only in an offline setting.
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Fig. 1: Data acquisition by a pushbroom imaging system

Consider a hyperspectral image Y € RV*PXK collected

by a pushbroom hyperspectral imaging system, where N, P,
and K denote the number of spatial, spectral and time mea-
surements, respectively. The samples to be imaged are carried
by a conveyor moving at constant speed. The hyperspectral
image is then acquired slice by slice, each of which is de-
noted by Y, € RV*P_ The size of Y increases with & which
can possibly grow to infinity. The acquisition parameters are
the spatial sampling A and integration time 7". We consider
situations where the spatial sampling A is smaller than the
support of the point spread function, which results in a spatial
blurring of the hyperspectral image, and the integration time
is small (for fast scanning) yielding a low signal to noise ra-
tio. This motivates the derivation of sequential deconvolution
algorithms that are able to restore, in an online way, an hy-
perspectral image X from a noisy and blurred observation Y.
The main contribution of this work is to introduce an LMS
framework for sequential deconvolution of hyperspectral im-
ages. While our algorithm operates in the spirit of LMS-based
algorithms used, for instance, for adaptive system identifi-
cation [17-19] and adaptive superresolution image restora-
tion [20,21], sequential image deconvolution of hyperspectral
images based on the LMS has never been reported in the lit-
erature. Accounting for the specificity of the acquisition pro-
cess, we propose a sliding-block LMS algorithm that allows
to sequentially restore the hyperspectral image of interest with



a delay ). We also introduce regularization terms promoting
the restoration of piecewise constant objects on a background
which should be zero-valued.

2. BLURRING AND CAUSALITY ISSUES

We shall now discuss issues related to the causality of convo-
lution kernel and associated estimates. Following [15], hyper-
spectral image blurring can be seen as P simultaneous spatial
convolutions. For each wavelength ), the blurred spatial im-
age Y? € RV*X i5 given by the 2D convolution:

Y? = HP +XP + ZP ()

where x is the 2D convolution operator, X? € RNVN*K is the
image to restore, H? € RM*L i a convolution kernel (filter),
and ZP is a noise supposed to be additive and i.i.d. We first
derive a sequential causal formulation of model (1). Without
loss of generality, we shall focus on the sequential model for
2D images, by omitting the dependence with respect to p. The
image Y, collected in an online way, can be represented as a
sequence of vectors yi = [y1.k,.--, YNk sk=1,..., K,
where | denotes the transpose of a matrix. We shall use
the same notation for X. We assume a finite length blurring
kernel of size L along the time dimension, centered around
0 which means that past and future values of x;, contribute
to the observation yj. In order to make the blurring kernel
causal', it has to be shifted by (L — 1)/2, which means that
the observations needs to be delayed by (L — 1)/2 samples,

that is, Y& = Yr—(z—1)72. Writing H = [hz,... h;] with
h, =[hmye,-- -, hu]T, model (1) can be expressed as:
L
Yk = Yk—(L-1)/2 = Z Hoxp—o1 + 21 @)
(=1

where z; is a zero-mean measurement noise, statistically
independent of the other signals. Hy is the N x N
Toeplitz matrix with first column and first row given by
[h,gs---,hae,0,...,0] and [hye,0,...,0], respectively.
Relation (2) introduces a delay in both time dimension
and spatial dimension because the filter is made causal
along these two dimensions. Another consequence of
causality issues concerns the estimation process of xy.
First, x; is involved in past and future observations
(ka(Lﬂ)/z, ey Yy e ,ykJr(L,l)/Q). Secondly, optimally
estimating xj requires all the past and future estimations
(.., Xp—2,Xp—1,Xk+1, Xk+2, - - -)» which precludes the es-
timation of xj in a sequential manner. To address these is-
sues, we recommend to produce the estimates X with a de-
lay ). This means that we shall estimate xj_g41 given
(kaL,l)/Q,QH,...,ykJr(L,l)/Q), coarse posterior esti-
mates (Xj,Xp—1,...,Xk—qQ+2) refined as k increases, and
past estimates (Xx—qQ,Xk—Q—1,- - - » Xk—Q—L+2). This is the

IFor simplicity, L is assumed to be odd.

key idea of the sliding-block LMS deconvolution algorithm
developed in the next section.

3. ONLINE IMAGE DECONVOLUTION

We shall first address the adaptive deconvolution problem in
the case of 2D images. Then the proposed algorithm will be
extended to hyperspectral images. Consider the problem of
estimating X;_g+1 in a sequential manner based on obser-
vations (Y4 (1—1)/2—Q+1 - - - » Yk-+(L—1)/2) OF, equivalently,
on the delayed ones (¥x—qQ+1,---,¥%)- In what follows, to
simplify notations, y refers to the delayed observation yy.
To account for their dependencies on Xg, ..., Xg_Q—r1,42, We
consider the following criterion:

T Xk, Xh—@-L+2) =
Q L 2

S E|yr-gr1 — Y HiXk g o4

q=1 (=1
Q Q-1

+ 15 D IDNXk—gralls + 1 Y kg1 — Xk—glln
qg=1 q=1
Q

+12 ) [%k-gi1lh 3)
q=1

where || - [|1 = 25:1 |{-},,| denotes the ¢;-norm, and {-},

stands for the n-th entry of a vector. Define the first-order
derivative filter Dy as an (N — 1) x N Toeplitz matrix with
first column [1,0,...,0] and first row [1,—1,0,...,0]. The
regularizers ||D nXg—g+1()1 and ||Xg—q+1 — Xk—q||1 promote
the restoration of piecewise constant patterns along the spa-
tial and time dimensions, respectively, and the zero-attracting
regularizer ||X,—_q+1||1 promotes the removal of the conveyor
background. The choice of these regularization terms is thus
motivated by the targeted application, namely, the inspection
of objects put on the conveyor belt. At a given wavelength, the
response of the conveyor after background removal is close to
zero while that of the objects is supposed to be piecewise con-
stant. The strength of the first derivative regularizers along
spatial and time dimensions are controlled by n, > 0 and
e > 0, respectively. The strength of the zero-attracting regu-
larizer is controlled by n, > 0.

3.1. Sliding-block regularized LMS (SBR-LMS)

We shall now devise the sliding-block regularized LMS algo-
rithm. Consider vectorized data:

1

A Q+L— Q+L-1
X = COI{X’%’*qul}q:l )

Yi = COI{}’qu+1}q:1



where col{-} stacks its vector arguments on top of each other.
A subgradient of (3) is given by:

- a—j -
8j (’)xk
(xx) = a: | Oxk_gn (€]
7‘7 ON><1
OXp—Q-rL+2 .
L ON><1 _

where O s denotes the I x J zero matrix. Approximating
the subgradient in (4) by its instantaneous value yields:

VI (x}) = = 2% (v}, — Gxj) +1:D, sign(D.x}.) )
+ 0Dy sign(Dyx},) +1:sign(x},)
where ® and G are matrices of size (Q + L — 1)N x (Q +
L — 1)N. Matrix ® is given by:
H/ 0
:T . . O0QNx(L—1)N
H/, . H]

OL-1)NxQN

| OL—1yNx(L-1)N

with Hy = O« for £ > L, and G a block-Toeplitz matrix
whose first block column is [H1,0nx N, - - -, Onx ] and first
block row is [Hy,...,Hr,O0nxnN,...,0nxn]. The first-
order derivative filters for spatial and time dimensions are:

D, £ [I; ® Dy 0Q(N=1)x(L-1)N]

D; £ Do @Iy Og-1)nx(L-1)N);
where ® stands for the Kronecker product and I; denotes
the J x J identity matrix. The sign function is defined as
sign(z) = 0 for z = 0, and sign(z) = z/|z| otherwise.
Finally, the SBR-LMS algorithm for image deconvolution is
given by:

K1 = Q%G — EVI (%))
= Q%] + p® (y}, — GX},) — p,D sign(D,%},),
— piD/ sign(D,%},) — pasign(X},) (6)

where (1 is a step size parameter that controls the convergence
rate and the algorithm stability, and

Lg-yn 0 O 0 @-1)NxN
el 0 Iy 0 Onxy

0 Iy O Onxn ,

0 0 TIir_2n Our—oynxn

Ps = Uns/2, pr = pne/2 and p, = un,/2. The final re-
sult x;_g+2 is obtained by selecting the (-th block of vector
X, 1. that s, A y

Xp—Qi2 = SXp g @)

where S £ [ONX(Q—l)N; IN, ONX(L—I)N]- When Q =1
and p; = p; = 0, algorithm (6) reduces to the Zero-Attracting
LMS (ZA-LMS) algorithm proposed in [18] for sparse system
identification.

3.2. Online hyperspectral image deconvolution

Consider now the problem of 3D hyperspectral image decon-
volution, which aims at restoring sequentially spatial-spectral
arrays X, € RY*P_ In an equivalent way, we shall consider
vectorized data

x}, £ col {Xﬁcp};;l .y = col {yﬁcp};;l

where superscript p refers to the spectral band. Adding a spec-
tral regularization term to promote spectral smoothness of the
image leads to the criterion:

P
Clox) = D T07) + mll Anx | ®)

p=1

where A\ £ (diag(cy ..., cp—1) Dp)®@I(gyr_1)n isafirst-
order filtering operator along the spectral dimension weighted
by the coefficients {cp};::_ll. The parameter 7, controls the
strength of the spectral smoothness penalty term. Finally, the
SBR-LMS algorithm for hyperspectral image deconvolution
can be expressed as:

%1 = %, — £VC()
=T, + p¥ (yi — TX) — ps A sign(Ax})
— pe N[ sign(A%),) — p.sign(X})
— AR K, €

with:
TL£I,0,T 2 blkdiag{i’p}f;l a block-diagonal matrix,
T 2 blkdiag{G?}?_, A, 2 Ip ® D,,and A; 2 Ip ® D;.

p=1>
4. EXPERIMENTAL RESULTS

The experiment described below aims at evaluating the per-
formance of the SBR-LMS algorithm on a real blurred hyper-
spectral image of size 581 x 431 x 16 with wavelengths vary-
ing from 501.1 nm to 868.6 nm with an increment of 24.5 nm.
The conveyor background was estimated from data in an area
of size 120 x 120. It was then subtracted from the real im-
age. Objects on the background were four pieces of wood, a
piece of paper-box cover and a piece of metal. The convolu-
tion filter was estimated from data to be a Gaussian kernel of
size 21 x 21. Its full width at half-maximum was set to 10
pixels. To avoid the storage of matrix Hy, convolution was
performed in the frequency domain.

To show the effect of each regularizer, we first present
the deconvolution results obtained on a 2D slice of the hyper-
spectral image corresponding to the first wavelength, namely,



1 1

—
100 B 08 100 i 08
200 S (o 200 . 06
300 04 300 04
400 02 400 0.2
500 0 500 0

-0.2 -0.2

100 200 300 400 100 200 300 400

(a) Original image (b) Estimated image by ZA-LMS

ps=pt=0,p,=7-10"%

1 1
wol [ os a0 [
0.6 0.6
200 ; [ 200 5 [
300 04 300 0.4
400 02 400 0.2
500 0 500 0
0.2 0.2
100 200 300 400 100 200 300 400

(c) Estimated image by SBR-LMS, (d) Estimated image by SBR-LMS,
ps=pt=pz=0 ps=pt=0,p;=7-10"%

1 1
100 == 08 100 o 0.8
0.6 0.6
200 ; Y N 200 ; Y N
300 04 300 04
400 02 400 0.2
500 0 500 0
-0.2 -0.2
100 200 300 400 100 200 300 400

(e) Estimated image with SBR-LMS, (f) Estimated image with SBR-LMS,
ps=pt=3-10"%,p, =0 ps=pt =3-10"%,p, =7-10"4

Fig. 2: Comparaison of different regularization parameters.

501.1 nm. The original image is shown in Figure 2(a). Fig-
ure 2(b) and 2(d) compare the performance of the ZA-LMS
algorithm obtained by setting () = 1, and the SBR-LMS algo-
rithm with block size () = 21. The step size p was set to 0.04
for the ZA-LMS, and to 0.01 for the SBR-LMS. We observed
that increasing the block size resulted in a faster convergence
rate. Thus, to ensure algorithm stability, the step size p should
be small when () is large. The image restored with ZA-LMS
in Figure 2(b) has lower noise level than the original image
but deblurring effect is limited. Better results were obtained
when we increased the block size as shown in Figure 2(d).
The effects of the regularization parameters ps, p;, p, are
shown in Figures 2(d)-2(f). All these deconvolution results
were obtained with Q = 21 and ¢ = 0.01. They show an
increase in resolution compared to the result obtained with-
out regularization in Figure 2(c), where some oscillations can
be observed. Smaller values for 1 may inhibit this oscillation
but may slow down the convergence rate and thus degrade the
deblurring efficiency. Besides, the spatial and time piecewise
constant penalties controlled by ps and p; led to an improved
performance as shown in Figures 2(d) and 2(f). In particu-
lar, the oscillations at object edges are reduced. Adding a
zero-attracting regularization forces the pixel intensities val-

100 B 08 100 = 08
0.6 0.6
200 W 200 ; R
300 0.4 300 0.4
400 0.2 400 0.2
500 0 500 0
-0.2 -0.2
100 200 300 400 100 200 300 400
1 1
2000 b | A \ 06
300 ® 04 300 0.4
-
400 0.2 400 0.2
500 0 500 r 0
-0.2 -0.2
100 200 300 400 100 200 300 400
1 1
200 . \ 06 200 - \ 06
300 0.4 300 . 0.4
. 0.2 0.2
400 400
® 0 ® = 0
500 500
-0.2 -0.2
100 200 300 400 100 200 300 400
1 1
100 - 08 100 - 08
2000 \ 06 2000 wum \ 0.6
300 0.4 300 . 0.4
400 . 0.2 400 0.2
=J 0 ©& p | 0
500 500

300 400 02 100 200 300 400
(b) Estimated image (SBR-LMS)

100 200
(a) Original hyperspectral image

Fig. 3: Hyperspectral image restoration at 4 wavelengths.

ues close to zero to be exactly zero. By comparing Figure 2(e)
and 2(f), or Figure 2(c) and 2(d), we conclude that adding the
zero-attracting penalty provides better results. Finally, Fig-
ure 3 presents the deconvolution result obtained on the whole
real hyperspectral image (at 4 wavelengths due to space lim-
itation: 501.1 nm, 623.6 nm, 746.1 nm and 868.6 nm). The
coefficients ¢, were all set to 1. The original image is shown
in Figure 3(a). The image restored with SBR-LMS (¢ = 0.01,
Q=21,ps=p =3-107% p, = 7-107%, n\ = 0.001)
is shown in Figure 3(b). The restored images are of better
quality from both denoising and deblurring points of view.

5. CONCLUSION

In this work, we addressed the online deconvolution prob-
lem of hyperspectral images collected by pushbroom imag-
ing systems. We discussed some issues related to the non-
causality of the model. Then, we proposed the SBR-LMS
and we evaluated its performance on real hyperspectral data.
Future works will be focused on a statistical analysis of the
convergence behavior of the SBR-LMS algorithm.
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