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Estimation of an Observation Satellite’s Attitude
Using Multimodal Pushbroom Cameras

Régis Perrier, Elise Arnaud, Peter Sturm, and Mathias Ortner

Abstract—Pushbroom cameras are widely used for earth observation applications. This sensor acquires 1D images over time and
uses the straight motion of the satellite to sweep out a region of space and build a 2D image. The stability of the satellite is critical
during the pushbroom acquisition process. Therefore its attitude is assumed to be constant over time. However, the recent
manufacture of smaller and lighter satellites to reduce launching cost has weakened this assumption. Small oscillations of the satellite’s
attitude can result in noticeable warps in images, and geolocation information is lost as the satellite does not capture what it ought to.
Current solutions use inertial sensors to control the attitude and correct the images, but they are costly and of limited precision. As

the warped images do contain information about attitude variations, we suggest using image registration to estimate them. We exploit
the geometry of the focal plane and the stationary nature of the disturbances to recover undistorted images. We embed the estimation
in a Bayesian framework where image registration, a prior on attitude variations and a radiometric correction model are fused to retrieve
the motion of the satellite. We illustrate the performance of our algorithm on four satellite datasets.

Index Terms—Multimodal image registration, satellite attitude, pushbroom cameras, hyperparameter learning, maximum a posteriori

estimator

1 INTRODUCTION

HE pushbroom camera is widely used since the 30’s for

earth observation applications on board of a flying vehi-
cle like a satellite or an aircraft; the article [10] provides a
good historical review of this sensor. Its specific design is
dedicated to exploit the motion of the vehicle; this linear
camera which captures several 1D images—or lines of pix-
els—over time, and sweeps out a region of space as the
imager moves straight and orthogonally to its acquisition
axis. The result of gathering the 1D images side by side is an
infinite image strip which can be cut to form 2D images.
The acquisition process is summarized in Fig. 1.

This sensor is manufactured in large quantities for
daily use in document scanners, fax machines or bar code
readers; we will focus here on satellite imagery. It has
several advantages over the conventional pinhole camera
like: a very high resolution image recording which can
produce gigapixel 2D images in few seconds [23], an
optimal use of the motion of the satellite to capture
images without redundancy [34], and a low production
cost with a high robustness. Note that the electronic

1. Orientation of the vehicle in a 3D space defined by the three rota-
tions: yaw, roll, and pitch.
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equipment of a satellite needs to be hardened to endure
space environment, thus a specific design of the charge-
coupled device is necessary and none of the classical
digital cameras available on the market could be used.

The pushbroom sensor requires a constant satellite
attitude' during the image acquisition. This strong assump-
tion was considered to be true several years ago [10]. How-
ever, the new generation of satellites is smaller and lighter
by design to reduce launching cost and make it more easy to
pilot, making oscillations of the spacecraft around its rota-
tion axis more likely. Also, with the increase of camera reso-
lution and lens quality, any very small dynamic disturbance
of the imager, like a rotation of a few microradians, can visi-
bly warp each 1D image, and consequently the whole 2D
image. Fig. 2 is a toy example of the warps one could observe
on a chessboard with an oscillating pushbroom acquisition;
the picture looks wobbly in an almost similar manner as an
image acquired with a rolling shutter [28].

An observation satellite usually has several pushbroom
cameras set in parallel on its focal plane to record multispec-
tral images. Fig. 3 is a schematic view of such focal plane; it
shows that a point on the earth is observed by each camera at
different time instants, which depend on the spacing between
cameras and the speed of the satellite. Thus, in order to build
a color image as a superposition of the red, blue, and green
channels, it is necessary to first register those channels in a
common scene reference. This is an easy step as the focal
plane’s configuration is known, but one may see that any atti-
tude variations of the focal plane during the acquisition pro-
cess leads to a tricky problem. In this case, all the images are
warped by the same temporal process, but those warps are
shifted in time according to the spatial locus of the sensors.

1. Orientation of the vehicle in a 3D space defined by the three rota-
tions: yaw, roll, and pitch.
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Fig. 1. Pushbroom acquisition principle: the camera is moving straight
along the y axis and recording 1D images over time denoted by ¢. « is
the camera axis and z the orthogonal axis to the image plane. The atti-
tude of the camera is defined by the yaw (rotation about z), the roll (rota-
tion about y), and the pitch (rotation about z).

The first consequence of attitude variations of the satel-
lite is the bleeding artefacts on the edges of the recomposed
color image, but the major problem is the loss of geolocation
information as the satellite does not capture the scene it is
programmed for. Most of the research and industrial use of
satellite images needs accurate data and cannot afford such
defects. Thus, those attitude variations have to be estimated
to correct the images.

This paper presents an original method to find the atti-
tude variations of a satellite based on the registration of its
acquired images. This is in contrast to the vast majority of
satellite attitude estimation methods which use external
sensors like inertial measurement units (IMUs). We first
review related works to motivate the originality of this
paper. Then, we describe how two images acquired by the
satellite can be registered into a common spatial reference.
To do so, we exploit the linear geometry and the positions
of the pushbroom cameras on the focal plane. This principle
can be applied to any pair of images coming from pushb-
room cameras of the satellite focal plane, it is a main contri-
bution of the paper. However, this problem is ill-posed and
needs some specific prior on the attitude variations to be
solved. The fourth section explains the embedding of the
estimation process in a Bayesian framework where a prior
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Fig. 2. Example of warps in a regular checkerboard when the pushbroom
camera is tilting around its three rotation axes.
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Fig. 3. Standard focal plane geometry of an observation satellite with
four pushbroom cameras: panchromatic, blue, green, and red (respec-
tively enumerated as 1,2,3, and 4). What is seen by camera 2 at time ¢
will be seen by camera 1 attime ¢ + 6.

on the attitude variations, an image registration term, and a
radiometric correction model between the two images are
combined. It also describes two estimation algorithms based
on the Lucas Kanade technique [2], [25]. To insure an accu-
rate multimodal image registration process, we design a
radiometric model at a pixel scale which, according to the
experiments, achieves a matching error lower than a tenth
of a pixel. This is another contribution of this paper. The
next section shows how the Bayesian framework allows to
automatically adjust the statistical parameters of the model,
which will be called hyperparameters, with an optimization
procedure of the model’s evidence [27]. This makes our
method almost completely free of parameter tuning. We
also investigate the integration of the radiometric coeffi-
cients in the complete model, which lets us estimate the atti-
tude variations without the need to estimate the radiometric
coefficients. This, to our best knowledge, has not yet been
formalized and tested for multimodal image registration
purposes. Finally, we evaluate the performances of our
solution and compare it over standard approaches with
four satellite datasets given by EADS Astrium.”

2 RELATED WORK

Unlike the pinhole model, little attention was paid to the
pushbroom case; these cameras are less known and datasets
are harder to obtain. Concerning their calibration, the corner
stone is probably the work of Gupta and Hartley [13], [14].
They derive two models to explain correspondences
between 2D and 3D points, they prove the existence of an
essential matrix for pushbroom cameras and show recon-
struction results of a 3D surface with satellite dataset. More
recently, a linear calibration method that uses homogra-
phies induced by images of a planar object has been pre-
sented in [8]. However, both methods assume that the
attitude is fixed during the acquisition, also they are not
suited for the case of several pushbroom cameras belonging
to the same focal plane.

Airborne imagery with helicopters or airplanes also uses
pushbroom cameras and has to deal with significant atti-
tude variations because of the wind. Nevertheless, it can
rely on very accurate IMUs on board to estimate the attitude
over time and rectify the images [11]. Thus, people focussed

2. EADS Astrium is a European aerospace company and satellite
manufacturer.
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more on IMU sensors fusion with global positioning system
[5], or ground control points which are manually picked fea-
tures on the images with known ground coordinates [32], to
get an estimate of the attitude. This technology has lead to
impressive 3D reconstruction methods of urban areas since
a few years [16].

The satellite case is more complex as such inertial sensors
cannot be easily brought into space. Apart from being very
costly due to their specific electronic design, they can be
prone to strong errors in their measurements because of the
space environment. Also their low sampling rate, usually
below a hundred Hertz, is not sufficient compared to the
pushbroom acquisition rate of 1D images which can range
between several hundred to few thousands Hertz.

As the warps on the images do contain information about
attitude variations, a method for estimating them using
image registration has been suggested in [6]; this is appar-
ently the earliest reference to such an idea, a similar solution
was proposed more recently in [20]. This method is a multi-
step procedure for all pairs of images which first extracts
corner points on one image, seeks their corresponding
points in a local neighborhood in the other image with a
cross correlation procedure, infers a relative attitude which
is finally deconvolved to obtain an absolute attitude varia-
tion estimate for all images; this matter of relative and abso-
lute attitude will become clearer in the next section.
However, this solution has several drawbacks: it uses small
correlation windows to estimate the local translation
between a pair of images whereas the warp is known to be
rigid along a line of pixels due to the geometry of the pushb-
room camera. It has several parameters which need to be
manually tuned like the sensitivity of the corner detector,
the size of the correlation window or the regularization
term of the deconvolution step. It offers no easy way to add
sensor measurements or priors on the attitude variations to
the estimation process. Its performances depend on the
observed scene; for example desert regions will have less
feature points to match, whereas sea surfaces will likely pro-
duce false features matching because of the repeated wave
patterns which move over time.

Image registration, as a key preprocessing step in many
computer vision applications [40], is a long-standing
research field; many solutions exist but none can really sat-
isfy alone this task in all its forms. Instead, one needs to
specify the nature of its image registration problem to get
the best performances: whether the warps have a paramet-
ric form or not—[39] and [41] are among the best reviews
for those two cases—if the misalignment is large—in which
case feature based techniques should be favored [24]—or of
a few pixels [25], and if the sensors capture the same radio-
metric modalities. Other criterions exist, those are just well
adapted to our purpose; [17] gives a good overview of
image registration for satellite images.

In this problem where deformations are of a few pixels,
direct image registration methods [19], also known as pixel-
based [39], or Lucas Kanade methods [25], should be well
suited: they make an optimal use of all the pixels in the
images, they have a sub-pixel accuracy which is needed in
this application, and finally they are fast and robust if the
assumption of small warps is not broken. However, the
sum of square differences (SSDs) criterion of the Lucas

Kanade is very sensitive to outliers such as radiometric dif-
ferences. Several solutions were proposed to deal with the
multimodal case: taking a more robust similarity criterion
like Mutual Information [7] but at the expense of an
increased computational cost, using local correlation meth-
ods [17] but as we previously explained it goes against our
will to consider a parametric warp related to the geometry
of the pushbroom camera, high pass filtering the images
before the registration process [18], rectifying one image
with a radiometric linear model to match the other at a
global scale [2] and at a local scale [21], [42], or modeling
the radiometric intensity transform [12]. In our case where
the radiometric differences are small, some of those meth-
ods are either too complex or may be less accurate than the
basic SSD criterion. So as to make sure that the image regis-
tration performs at least as good as the SSD criterion in this
case, a linear radiometric correction model at a pixel scale
seems to be a good solution. The statistical relevance of this
model has already been investigated on real images for mul-
tisensor super resolution in [42]; this last article clearly moti-
vates our work. Moreover, we will show how it can fit
efficiently in the Lucas Kanade algorithm with a two step
optimization procedure. There is however a strong risk of
overfitting with this solution [21], thus specific priors for
the radiometric coefficients need to be designed as well as a
method to infer the parameters of those priors. This is also a
contribution of this paper over the state of the art in multi-
modal image registration.

3 UNDERSTANDING IMAGE REGISTRATION

Fig. 1 summarises the acquisition principle of a single
pushbroom camera, now let’s consider the case of two
pushbroom sensors set in parallel on a focal plane. We will
make the following assumptions:

e Thedistance between the earth and the satellite is large
so that the observed scene can be considered as being
planar; this implies that parallax effects between the
lines of sight of the two cameras are negligible. In prac-
tice, the use of digital elevation model (DEM) as
described later will allow to relax this hypothesis.

e The satellite moves straight and at constant speed at
the time scale of a 2D image acquisition.

e Given the small time shift between the observation of
the same scene point by the two cameras, occlusion
artefacts are unlikely to happen and warps on
images cannot exceed a few pixels.

Let Z and J be the image functions of respectively camera ¢
and j where ¢ and j € [1,4], and j # ¢ according to Fig. 3.
Given those hypothesis, we expect to have the following
relationship between the two images recorded by the
pushbroom cameras®:

I(z,t) — J(z,t —8) ~N(0,0%), (1)

3. We use the following math notations: column vectors are bold
(e.g., x), scalars are written in italics (e.g., 2), matrices are upper case
letters (e.g., X), calligraphic font denotes functions (e.g., X), N (i, 0?) is
the Gaussian probability distribution with mean 4 and standard devia-
tion o.
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where z € [1,n] is the discrete pixel position along the cam-
era axis, ¢ € [1, 7] is the discrete acquisition time index, and
8 is the real time shift value in pixel unit according to the
focal plane. Images are defined on a discrete grid of pixels,
but image intensity values on a non integer pixel location
can be obtained through interpolation techniques. Literally,
this expression means that one expects to capture at time ¢
with camera 7 what has been recorded by camera j at time
t —§, up to sensor noise and radiometric sensitivity differ-
ences between both cameras, which are represented as a
zero mean Gaussian distribution with standard deviation
oz. During the acquisition process, small attitude variations
of the satellite can occur and warp the images according to
a function which will be denoted by W. Let 6, be the attitude
variation of the satellite over time; for the sake of clarity we
will assume that this variable could either be the yaw, the
roll or the pitch angle. We will make the following
hypotheses:

e There exists a function W which, given a pixel loca-
tion (z,t) on an image and an attitude variation 6,,
outputs a new pixel location on the image:

W:R2 xR — R? (2)
W(z,t;0,) = (2, ). (3)

e This function is invertible and possesses the follow-
ing composition rule:

WOW(z,t:6;);8,) = W(z, t;60; + 0}). 4)

e  When 6, = 0, the function is the identity:
W(z,t;0) = (z,1). (5)

Regarding this function, it is hard to obtain an analytical
form for W as it depends on the cinematic of the satellite as
well as the ground elevation of the observed scene. If it is rel-
atively easy to project the line of sight of the pushbroom cam-
era on the ground given a DEM, the inverse operation which
computes the location of a point on the pushbroom image
given its spatial coordinates on the ground is insoluble with-
out strong hypotheses like in [31]. Function W should be
seen as an operator which explains how pixels move in an
image when the satellite is not steady during the acquisition
process. To the first order, the roll and the pitch are respec-
tively translations of the 1D image along the = and ¢ axis, as
can be seen in Fig. 2. The experiments section will give more
insight into this function, but any theoretical development of
W is beyond the scope of this paper. In a non steady case of
the satellite, the left part of Equation (3) becomes:

IW(x,t;60,)) — T (W(x,t — 860,-5)), (6)

where one should note the different time indices t and t — §
between the attitude variations of Z and 7 which are linked
to the focal plane geometry. Following our hypotheses and
relation (4), we have:

I(z,t) — T(W(z,t - &6)), ™

power spectrum of kernel k9
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Fig. 4. Power spectrum of &? for several values of §.
where:
s
925 — 915 - Gt_(;. (8)

One can look for & with the following expression:

éf = argmin Z (I(:z:, t) — j(W(ZL‘, t—94; 9‘:)))2 (©))

This criterion is optimal with respect to the statistics of
Equation (1), it is the maximum likelihood estimator of 6
and the maximized function is also well known as the SSD
energy [39]. One can understand that image registration
between Z and J provides a relative estimate of the attitude
variation #° as opposed to an absolute one with 6, directly.
Indeed, trying to estimate 0; from Equation (9) without the
knowledge of 6;_s is an ill-posed problem. One should first
estimate 0,_s, but one would need to know 6,_,; prior to this
step, and this becomes an endless loop. So as to get a better
understanding of the ill-posed nature of the system, let us
here observe that it can be reformulated as a deconvolution
problem where:

0 = (K x0),, (10)

with x being the convolution operator and k° being a dis-
crete convolution kernel* which differentiates over time the
attitude variations 6, according to the value of 8. It is now
interesting to look at the spectrum of &’ in Fig. 4 with
respect to the value of §, it tells where the frequency content
of 0, is lost after the convolution process. Quite simply from
the shape of the spectrums, each place where the black
curve drops down is a loss of information about 6;. Yet
according to the value of §, which we remind as being
dependent on the focal plane geometry, the deconvolution
problem will be more or less ill-posed with respect to the
spectrum of 6;. It should be clear that a prior information on
0; is needed to estimate the absolute attitude variations
from the images. Another important issue is the different
radiometric sensitivity of the cameras. As already noted,
Equation (1) should be understood as up to radiometric
effects between both cameras. If the spectral channels gener-
ally overlap between all the pushbroom cameras on a satel-
lite focal plane, which makes the images look very similar,

4. Let § = 3, the associated discrete kernel will be k* = [~100 1)7.
Note that any non integer value of § can also be linearly approximated
with a kernel, for example § = 2.5 and & = [-1 0 0.5 0.5]".
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it is also well known that the SSD criterion of Equation (9) is
not robust to any small bias or outliers in the images. Sev-
eral solutions were described in the previous section to deal
with multimodal image registration. As our major concern
is the accuracy of the attitude variation estimate, we will
use a model at a pixel scale, and restate the problem as:

where a,; and b,; are radiometric coefficients which rectify
any offset and spectral sensitivity differences between the
two images. In this case, the unknowns are a,, b,;, and 6,
for all z and ¢; it is an expensive solution as it increases the
number of unknowns at a rate of twice the number of pixels
used in an image for the registration process. Moreover the
problem is still ill-posed as one of the trivial solutions is to
set b,; and 6; to 0, and let a,: = J(x,t), therefore we need
again to define priors over the radiometric coefficients.

4 MAXIMUM A POSTERIORI (MAP) FORMULATION

An easy way to deal with sensor measurements and priors
over the unknowns may be to see this problem in a Bayesian
perspective. Let 6, a, b, i, and j be respectively the vector-
ized forms of the attitude variations, the radiometric coeffi-
cients, and the images Z and 7. What we seek to maximize
is the joint probability of all the variables, which writes as
follows:

p(0,a,b,1,j) = p(0,a,b|i,j)p(i,j)
_p(i,j|6,a,b)p(6,a,b)
p(i,J)
=p(i,j|0,a,b)p(0)p(a)p(b).

The first line is a simple multiplication rule of probabilities,
the second one uses Bayes theorem, and the third one
assumes independence between the radiometric coefficients
and the attitude variations such that p(6,a,b) = p(0)p(a)
p(b). Thus, the optimization problem we want to solve is:

(12)

p(i,j)

6,4,b = argmax p(i,j|6,a b)p(O)p(a)p(b),  (13)
[

.a,b

which is also known as the maximum a posteriori estimator.
This expression brings out four terms: the likelihood proba-
bility of the images p(i,j|6,a,b) which explains the link
between the measurements and the variables of interest,
and three prior probabilities about which we will talk later.

4.1 Likelihood of Images

In probabilistic terms it could be understood as a measure of
“how likely are the measurements i and j if we were given 0,
a and b?” The previous section has indirectly talked about
the likelihood term in Equation (11), expressing its probabil-
ity yields:

p(iaj | 97 a, b) = H Hp(I(IL“,t), j(x7t) | 9157 Ayt bmf,)a (14)

t=86+12=1

where it is assumed that the noise in the images is indepen-
dently distributed over the pixels space. Let M; be a matrix
of size (n, x n,) with the image vector i on its diagonal and

zero values elsewhere, and n, = n(t — §) the total number
of pixels considered in the registration process. Given Equa-
tion (11), the likelihood probability writes as:

p(i,j6,a,b) = cr exp( — 0.507%||a+ Mib — jo||*),  (15)

with:

9 7'71(1{—6)
cr = (2n03) "7 . (16)
Image j is indexed with 6 to remind its dependence on the
attitude variations, like matrix M; with image i; ||.|| is the

vector norm such that ||x|| = vVxTx.

4.2 Attitude Variations Prior

In order to design a specific prior for the variable 6,, one
needs to wonder about the origin of those oscillations of the
satellite around its rotation axis. Attitude variations of the
satellite can originate from its engines which are vibrating,
but also from space turbulences which make it deviate from
its trajectory. Also, the physical state of the satellite is of
great importance as its angular momentum can be quite dif-
ferent when its solar panels are spread out or not, this could
impact amplitude and frequency contents of the oscillations.
Thus, choosing an informative prior which could work on a
long time period is difficult and may bias the estimation
process if it is too specific. However, due to the strong iner-
tia of the satellite, sudden motion of the spacecraft is
unlikely to happen such that smoothness over time is a
trustworth property of the attitude variations. Therefore,
we will use a one order Markov model to explain how atti-
tude variations change over time:

0, =0, 1+¢€ e~N(0,03). an)
This is like an autoregressive model (AR) with just one coef-
ficient equal to 1. It is possible to design higher order models
[29], [30], but learning the autoregressive coefficients is chal-
lenging. Moreover, it is difficult to understand how well
such a model generalizes during the lifetime of a satellite.

One can express the attitude prior with Equation (17):

p(0) = p(6:) [[p(6:16:1) where 6; ~N(0,05 ). (18)
t=2

We call D the (t x ) matrix which differentiates in time the
attitude vector 6 and let 3%, be the (r x t) diagonal matrix
with of being the first element of the diagonal, and o}
elsewhere. Equation (18) gives in vector form:

p(8) = cg exp(— 0.5]| De|f5 ), (19)

with:

ey = (2702,) " (2702) 7, (20)

The operator ||.||s is the weighted vector norm such that

Ix[ls = VxTS'x.
There is no way to retrieve the offset information for 6,

because of the convolution nature of the problem. The role
of p(61) is to keep the first value of the attitude around zero,
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and avoid any ill conditioning of the system of equations to
solve; the parameter oy, should be set to a sufficiently large
value to give some freedom to the optimization process.

4.3 Radiometric Coefficients Prior
We do not have much insight on the nature of the radiomet-
ric coefficients a and b, except that they should bring a
minor correction to the image registration process, and in
order to relate Equations (7) and (11), coefficients a,, and b,,
should be respectively close to 0 and 1. An interesting point
raised by the image processing community is that the vast
majority of image registration techniques needs high fre-
quency features in images to make correspondences like cor-
ners [15], lines [4], image derivatives [18], or higher level
features [24]. In our case where images are very similar and
occlusion is unlikely to happen, we could let the radiometric
differences be low frequency components in the images. The
idea behind is to make the high frequency features of the
images drive the registration process while letting the dis-
turbing radiometric features be smoothed over the images.
Considering spatial smoothness on both dimensions x
and ¢ for the coefficients a:

gt — Qgr—1 ~ Plagt | az—1) = N(0,02) @1)
gt — Ap—1¢ ™~ p(aact | axflt) = N(07O'(215) ’
we can define the following prior:
p@) = plan) [T T]p(an @)
o =542 =1 22)
H Hp(an |az-1;) where @, ~ N(0, oim).

t=0+1 =2

We denote by R the matrix which differentiates along « and
t the vector of coefficients a, and by 3, the diagonal matrix’
which contains o2 as its last element and o2 elsewhere.
This gives in vector form:

p(a) =c, exp( — ().5HRaH§”), (23)

with:

_n(2r-26-1)—748

) H(emo2) 2

Co = (271037” (24)
The parameter o,, tunes the amplitude of a coefficient with
respect to its neighbors along = and ¢, whereas o,,, sets the
amplitude of coefficient a,, alone. This last coefficient still
has a global impact on the model as all the coefficients are
connected together.

The prior for b will be the same, but with a different
smoothness parameter o}, and a different prior probability
distribution for b,,; which will be N(1, azm), according to the
observation we made at the beginning of the paragraph.
Hence we have:

p(b) = ¢, exp( — 0.5]|Rb — [l,bHéb), (25)

5. The size of matrix R is (n(2r—28—1) —7+8+1) x (n,) and
accordingly the size of matrix 3, is (n(2t—25—1)—t+8+1) x
(n(2t—28—1)—t+8+1).

with p, being the mean vector which elements equal zero,
except for its last term which corresponds to the mean of
p(by;) and equals 1, and:

1 _n(21-26-1)—148

o, = (270} ) *(2m07) P (26)

4.4 MAP Estimator

Given the likelihood of images in Equation (15) and the pri-
ors in Equations (19), (23), and (25), we can express the full
MAP estimator of Equation (13) in logarithmic form and up
to constant values which do not depend on the variables of
interest:

6,4, b = argmax —o7’||a+ M;b —j9H2
6,a,b

~ |16, - [|7a]

(27)

s~ 1B = mill,.

where o7, 04, 04,,, Ob,, Ob,,, and oy are parameters of the
model often known as hyperparameters [22], [26], [33]. As a
sum of squared residuals, this system can be efficiently
solved for example with a Gauss Newton (GN) algorithm.
There are several motivations for this choice. The warps
between the two images and the amplitude of the radiomet-
ric coefficients are small enough such that setting 6 =0,
a=0and b = 1is already close to the good solution; in this
case the GN algorithm leads to a fast convergence. It does
not need to compute any hessian matrix of the system as it
makes use of its jacobian matrix to approximate it, and
moreover the jacobian matrix can be easily computed for all
the prior terms. Finally, it has been shown that the GN
search strategy is among the best methods for pixel based
image registration in the case of small warps [2]. It was orig-
inally proposed in [25] for the task of image registration and
is now well known as the Lucas Kanade algorithm. The
main motivation is to approximate the warped image, j, in
our case, with its first order Taylor expansion:

AR
P jo o 90 3
Jo =]+ [E Ti| WV, 0°, (28)
—— 90
i "
xt Vﬂ
where [] is a matrix concatenation operator, V3% is a

(n, x 2n,) matrix which contains partial derivatives® of the
warped image J with respect to z and ¢, and V}’ is the
(2n,) X (r — &) matrix of partial derivatives of the warp
function W with respect to . One should remind that 6 is
convolved by the kernel k* as explained in Section 3. This
linear operation results in the vector & whose length is
7 — 4. The algorithm can be summarized by the following
steps:
global algorithm

e Initialize variables # =0, a=0 and b =1 and set
hyperparameters (o7, 04;, Ga,es Obys Obyer O6)-
e Do:

6. Those derivatives can be efficiently approximated by convolving
the image with high pass filters like [1 — 1] and [1 — 1]” to get, respec-
tively, the derivatives along the x and ¢ directions.
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1)  warp image [ according to 6’ to get j,,
2) compute V¥ and V),
3) Toget A9, Aa and Ab, solve:

argmax —a§2||a + Mib — j, — Vj;ftvg‘/O‘SHZ
6.a,b

- [ Doz, - || Ral

S L

4)  update variables:

0=0+A0,a=a+Aa and b=b-+Ab

e while

V/[|A0]2+||Aal|2+| Ab||?
llAg]] H2 [~+]|Ab]] > €.

nyT

The linear expression in step 3 can be solved using the
normal equations as in a linear least squares problem. The
stopping criterion stops the algorithm whenever the update
to the variables is too small; £ was empirically set to 107°.

This algorithm, denominated ”global” thereafter, jointly
estimates attitude variations with radiometric coefficients.
Yet, variables a and b could be solved analytically if 6 was
known as Equation (27) is linear with respect to them. The
following algorithm takes advantage of this observation to
split the estimation process into two steps:

two steps algorithm

e Initialize variables # =0, a=0, b=1 and J to j,,
set hyperparameters (o7, 04, Ga,., Tbss Tiyer O0)-
e Do: ]
1)  compute V2% and V),
2) toget A, solve:

argmax —o7°|la+ M;b — j, — VJ;ftVZVGSHQ
0

- |[els,,

3) update variable: 6 = 6 + A0,
4)  warp image J according to #° to compute j,,
5) togetaand b, solve:

2
P

argmax —o72||a+ Mib — jo||° — || Ra
ab

- HRb*ﬂbH;b’

o while V2 5 ¢

The system of equations in step 3 of the global algo-
rithm is now approximated with two steps: step 2 esti-
mates the attitude variations and step 5 solves a linear
system to find radiometric coefficients. All variables are
refined at each iteration, but whereas the first solution
looks for a vector of length v+ 2n, the two step
algorithm estimates two vectors of length 7 and 2n,. The
benefits and drawbacks of this approximation will auto-
matically come out in the experimental part where we
consider the case of multiple images registration.

5 STEPPING INTO BAYES FRAMEWORK

Two questions arise from the model explained previously:
how to choose the hyperparameters oz, 04,, 04,., Ob;s b,
and oy which shape the statistics of the model? As our pri-
mary focus are the attitude variations of the satellite, is there
a way to drop the radiometric coefficients from the estima-
tion process?

5.1 Hyperparameter Learning

Setting the hyperparameters is a difficult task without
proper expertise on the problem or any groundtruth data
which can evaluate the accuracy of the model for a given set
of hyperparameters. They can be set by hand, or optimized
with respect to several criteria: model complexity [1], gener-
alization error [35], model evidence [22], [26], or photometry
[3] among other methods. The number of hyperparameters
to look for discards any greedy algorithm like the cross vali-
dation, and optimizing the model evidence in this case is a
reliable method. The marginal likelihood probability of the
images is a measure of the evidence of the model such that
finding its mode with respect to the hyperparameters will
hopefully select the right model. This probability distribu-
tion is as follows:

p(i,j) =/ p(i,j,0,a,b) dodadb
6,a,b

(29)
- /9 03168, D)p(@)p(a)(b) dodad
Let g(a, b, 0) be the following function:
g(a,b,0) = 0.5(052”51 + Mib + .
+ 10615, + [|Ras, + [1Rb = w3, ).
Equation (29) becomes:
p(i,j) = CIC@C(,C},/G bexp(—g(a,b,@))d@dadb, 31

which is analytically intractable because of the non linear
nature of the g function; one needs to come to an approxi-
mation scheme to solve this problem. The Laplace approxi-
mation is a solution in this case as long as we can have a
first good estimate of the attitude variations and the radio-

metric coefficients. Let §, a and b be this first good estimate,
and G the hessian matrix of the function g evaluated at 0, a
and b. Equation (31) now simplifies as:

p(ihi) = CTCHCaCh exp(—g(fi, Ba é))

o-01" [o-0
/ exp| —05|a—a| G|la—a dfdadb
fab b-b b-b
= crcocacy exp(—g(a, b, é))\QTrGFO'B.
(32)

Thus, one has to solve the following optimization
problem, expressed in a logarithmic form, to find the set
of hyperparameters:
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017 Uas b Uam 9 Gbs b Ubylr b 09 - argma‘x log(CZCQC(LCb)

OT:0a5:0ant :Obg 10bp1 100
~ 1
(33)

All the three terms depend on the hyperparameters
according to Equations (16), (20), (24), (26), and (30). In prac-
tice, the gradient of the previous equation can be computed
so that a gradient based optimization method can give a
solution. One needs first to estimate the attitude variations 6
and the radiometric coefficients a and b with the algorithm
as given in Section 4.4 and a set of hyperparameters initial-
ized by hand. Then, the optimization as given in Equa-
tion (33) can be run with the first estimate and the manually
tuned hyperparameters as initial values. Considering the
size of the G matrix which is (2n, + 1) x (2n, + 1), hyper-
parameter learning has to be performed on small patches of
images to be efficient.

5.2 Marginalization of Radiometric Coefficients

A major drawback of the MAP estimator as described in
Section 4.4 is that one needs to optimize the attitude varia-
tions with the radiometric coefficients together to get a fine
estimate, but those coefficients are not of real interest.
Again, a Bayesian framework, which defines probability
distributions over the variables, gives the opportunity to
integrate out some of the variables we do not care about.
More specifically we have:

p(3,5,0) = / p(3,3,6.2,b) dadb
ab

(34)
~ [ pliil6.ab)pE)p(a)p(b) dadb.
One should also note that:
p(i,j,0) = p(i,j[0)p(6), (35)

so that looking for the mode of p(i, j, 0) is like the MAP esti-
mator of the attitude variations, where the radiometric
model has been embedded into the equation but without
the need to estimate the actual radiometric coefficients. This
integral is analytically tractable because of the Gaussian
nature of the linear priors for coefficients a and b. As the
goal is to seek the mode of the probability distribution
p(i,j,0), we can put it into logarithmic form and drop the
terms which are constant with respect to 6. This results in
the following expression to be optimized:

0 = argmax p(i, j,0)
0

2 T -1 —2.7T's (36)
— arggnax —HD0||26 +c A7 c— 07 5pdes
where:
T —1 -2 -
A= | B2 Bt or s S Mi - (37)
M; RS, MR+ 072 MI M;,
is a sparse matrix of size (2n, x 2n,) and:
o[ I, je} [ 0,, }
c=o P04 7 , (38)
z [Afi.]@ RTEb lﬂb

is a vector of length 2n,,. Variable I, is the identity matrix of
size (n, x n,) and 0,,, is the null vector of length n,,. In prac-
tice, expression (36) can be solved with a gradient based
optimizer; we used a Newton algorithm which needs both
the gradient and the hessian of expression (36) to be com-
puted. The term j; j, is linearized using Equation (28), and
the image 7 is constantly warped at each step of the New-
ton algorithm with the current attitude variations estimate,
just like in the GN algorithm. Yet the matrix A must be
inverted; given its large size, this is a major drawback of
this method, but it does not depend on 6 so the inversion
only needs to be done once.

6 EXPERIMENTS

6.1 Methods

We compare several image registration methods to estimate
the satellite’s attitude variations. Hyperparameters learning,
as described in Section 6.3, is done before their use. Those
methods are as follows:

M1 Method 1 does not consider any radiometric correction
model; it uses the image likelihood term as given in
Equation (15) with (a =0, b =1) and the prior on the
attitude variations as given in Equation (19) to solve:

0= argranax —UEQHi —j9||2 - ||D9H§9. (39)

This equation can be efficiently solved with the GN
algorithm, in the same manner as the global algorithm
described in Section 4.4 but without any concern on the
radiometric coefficients.

M2 Method 2 is a straightforward extension of method 1,
where images are filtered with a Differences of Gaus-
sians operator. This is done once at the beginning of the
algorithm for image Z, and at each iteration for image
J. High pass filtering is a well established solution to
register images of different modalities [4], [18].

M3 Method 3 estimates both the attitude variations and the
radiometric coefficients, it solves Equation (27) using
the global algorithm in Section 4.4. It is the complete
registration model which is promoted in this paper.

M4 1t solves the same equation as M3, but with the two step
algorithm. We expect to see similar results with a
reduced computational time.

M5 Method 5 marginalizes the radiometric coefficients to
estimate only the attitude variations. It is described in
Section 5.2 and solves Equation (36). All the previous
methods use the GN search strategy; in this case, we
use a Newton algorithm. To speed up its convergence,
we first run M1 to get an attitude variations estimate
which is then used as an initial value for the algorithm.

M6 Method 6 has been described in the CVPR paper [30]; it
uses the same likelihood term as M1 for image registra-
tion. It does not take care of radiometric differences
between images, but it has a more specific prior for the
attitude variations with an autoregressive model. Hyper-
parameters are selected with a cross validation algorithm.

Although we have described the image registration model

for a single angle of the attitude for clarity, it is better in

practice to jointly estimate all angles. If 6 is the 3t attitude
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vector which stacks the three angles, only few modifications
need to be performed: the matrix D in Equation (19) should
be replaced by a block diagonal matrix with this same
matrix D replicated three times, and the matrix VZV of par-
tial derivatives of the warp function in Equation (28) should
be extended along its columns to contain the three angles
such that its new dimension will be (2n,) x (3(t —§)).
Radiometric coefficients are linked to the images and do not
depend on the number of angles we considered in the esti-
mation process. To deal with multiple images registration
in M3 and M4, one needs to solve for n € [1,4] and
m e [1,4]:

97 é7 B = a‘rglna‘x p(e) H p(i7l7j"l, | 07 a7l7ll7 bnm )p(anm)-p(bnm)-

0.ab nmin#m

(40)

This extends the two images case of Equation (13) with
vectors a and b which now stack all vectors a,,,,, and b,,,, of
length n,, for each considered pair of images. Thus the num-
ber of variables to estimate linearly increases at a rate of 2n,,
when one chooses to register two images of the focal plane
in Fig. 3. In practice, we empirically chose a subset of pair of
images such that n=1 and m € [2,4] to reduce the
dimensionality of the problem. Literally and according to
Fig. 3, the panchromatic channel (1) is set as the reference
image and compared to the blue (2), green (3), and red (4)
template images.

Whereas M3 will need to estimate a (2t + 6n,) vector in a
single iteration of the global algorithm, M4 only has to infer
independently a 27 vector for the attitude (roll and pitch), and
three radiometric coefficients vectors of length 2n,, per itera-
tion, which greatly reduce the size of linear systems to solve.

Note that for the remaining methods, the only variable
to estimate is 6 but the computational load is still
increased by the interpolation operation of the template
images at each step.

6.2 Datasets
Each dataset has four multispectral images (panchromatic,
red, blue, and green) of size (2,564 x 900) pixels, the first
dimension being the number of time samples and the sec-
ond being the size of the pushbroom camera; we will keep
this convention thereafter. The acquisition rate of 1D images
from the pushbroom sensors is 770 Hz, thus the 2D images
are roughly recorded in 3.3 seconds. Those datasets were
simulated in a way which recreates real-life acquisition con-
ditions with pushbroom sensor noise, ground elevation of
the observed scene, radiometric distorsions, and realistic
attitude variations of the satellite. We did not have access to
the simulator as being the property of EADS Astrium, how-
ever this data is considered as difficult as could be real data.
A dataset is composed of the warped images, the attitude
variations of the satellite which have disturbed the acquisi-
tion process and are the groundtruth for our experiments,
the focal plane configuration which allows to design the ker-
nel of Equation (10) for a pair of images, and the numerical
derivatives of the warp function WV with respect to « and ¢.
These latter derivatives are computed using a finite differ-
ences method, knowing the position of the satellite and

TABLE 1
Estimated Hyperparameters for the Different Dataset with
the Evidence Procedure of Section 5.1

M3, M4 and M5 M1 and
M2
o1 Oy Oane Opy Ob,,r Oy o7 Oy
init.  0.05  0.005 0.05 0.005 0.05 0.03 0.05 0.03
D1 0016 7.10°* 0.044 4.10°* 0.9 0.11 0.011 0.13
D2 0020 8.10°* 0.087 4.10°* 0.21 0.05 0.014 0.07
D3 0015 4.10* 0.076 3.10~* 0.19 0.05 0.013 0.08
D4 0012 1.10°* 0.006 1.10"* 0.01 0.08 0.010 0.10

The first line contains the initial values before the optimization process.

with a digital elevation model of the ground. Specificities of
the dataset are:

e Dataset 1 (D1), Dataset 2 (D2), and Dataset 3 (D3)
contain multispectral images with respectively high
frequency, low frequency, and again low frequency
attitude variations.

e Dataset 4 (D4) is a tricky case for which images are of
the same radiometric modality. However it will be
treated as a multispectral set to see how our method
performs compared to M1 which should be the most
appropriate one. It contains low and middle fre-
quency attitude variations.

For all datasets, the pushbroom cameras location on the
focal plane is [1.5, 35, 75, 95] in pixel unit for respectively the
panchromatic, blue, green, and red channels and according
to Fig. 3. As an example, § equals 20 between the green and
red cameras, and the discrete kernel %’ for this pair of

images equals [10...01]", with 19 zeros in it.

6.3 Estimation of Hyperparameters

We used the Matlab optimization function fminunc to solve
Equation (33) with the analytical gradient provided. The
most time consuming operation in this expression is to com-
pute the determinant of matrix G, as it is of size (t + 2n,) X
(t + 2n,). To reduce this time to a few hours, we trained the
hyperparameters on 10 randomly chosen image patches of
size (140 x 30) for each dataset. We kept the same hyper-
parameters for all pairs of images in a dataset, which has not
induced any significant loss of accuracy in our experiments.
Table 1 gives the estimated hyperparameters.

Those same values were repeatedly obtained several
times with the same initialization and other image patches.
As the marginal likelihood is a function which has multiple
local minima as observed in [35], the initial values may
change the results. It is however hard to quantify the sensi-
tivity of the method in this multidimensional problem. The
initial hyperparameters were manually chosen without
knowing the groundtruth. There is no guarantee that a man-
ually tuned model cannot perform better, but one would
need the groundtruth to drive the hyperparameters selec-
tion, which is not available in a real case scenario.

Overall, the learned hyperparameters for the radiometric
coefficients (o,,,04,,, 0, 0p,,) are pretty much the same for
datasets D1, D2, and D3. One can expect to observe a similar
relationship between the panchromatic band and the other
channels almost whatever the observed scene is. Dataset
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D/, which is not a multispectral set, shows different results
for the hyperparameters values: it enforces spatial smooth-
ness of a and b (smaller values for o,, and o;,) and keeps
their values close to 0 and 1 respectively (again smaller val-
ues for o, and o;,,). The image registration model tends to
Equation (9), which is in agreement with a unimodal set of
images. Slight differences are observed on the estimated
noise parameter of the images o7 and on the prior parame-
ter of the attitude variations oy which indeed depends on
the frequency content of 6. It should be noted that we chose
to keep the same oy value for all angles of the attitude
because the satellite is likely to oscillate in the same manner
around its three rotation axis.

6.4 Attitude Estimation Results
We present attitude estimation results on the roll and the
pitch angles for the previously described datasets. No result
on the yaw is given as it causes deformations lower than
two hundredth of a pixel on our images, it is too small to be
recovered with such a complex warp and in a multimodal
image registration case. Notice that the litterature shows at
best pixel accuracy of one hundredth of a pixel in unimodal
and five hundredth of a pixel in multimodal cases for trans-
lational warps [9], [36].

The evaluation criterion is the standard deviation of the
error with respect to the time, denoted ¢, between the real
attitude, denoted 6;, and the estimated one. This gives:

-, /;‘ (6 —0)",

and averaged over the roll and the pitch. We chose the Mat-
lab environment to code the algorithms and process the
data. Except for the hyperparameter learning procedure
which needs the optimization toolbox, no specific function
was used and all other algorithms were manually imple-
mented on a middle end desktop computer (core i5 with
8 GB of RAM). To reduce processing time, images were cut
into five chunks of 512 pixels along the time axis and 300
pixels along the pushbroom camera axis. Let us remark that
it is not necessary to consider the full acquisition of the
pushbroom camera, which is 900 pixels here, to estimate the
attitude variations 6, at a given time ¢. Except for optical
flow purposes, pixel based image registration methods usu-
ally do not need to use all the pixels of the images to esti-
mate a parametric warp [2]. The location of the (512 x 300)
chunks along the pushbroom camera axis is randomly cho-
sen. Results are given in Table 2; the complete processing
time is the result of registering the five chunks of images
one after another. As one might expect, method M1 gives
the best computational time while being quite accurate; if
speed is a concern, one should use this technique to register
its images. On the other hand if accuracy is crucial, which is
often the case with satellite images, methods M3, M4, and
Mb offer the best alternatives, with M4 offering the best
compromise between speed and accuracy. Most surprising
results probably come from method M5, which is as good as
M3 but without the need to estimate any radiometric coeffi-
cients during the image registration process. However, this
method needs a more efficient procedure to be solved, as it

(41)

TABLE 2
Attitude Estimation Results on Datasets for Each
Method with Respect to Criterion (41)

D1 D2 D3 D4

€ time € time € time € time
M1 0.072 27 0.043 26 0.091 24 0.056 23
M2 0.128 63 0.121 75 0.067 42 0.101 59
M3 0.036 1,215 0.024 1,255 0.033 1,095 0.056 1,199
M4 0.037 281 0.023 254 0.033 245 0.057 261
M5 0.040 1,821 0.024 2,016 0.034 2,675 0.061 2,434
M6 0.055 477 0.044 263 0.071 256 0.060 419

The error ¢ is in pixel unit and the time is in seconds. Best results for a given
dataset are in bold face.

is by far the most time consuming one. Poor results of
method M2 may be explained by the high pass filtering
technique which reveals edges on the image but also
increases the noise level, even though the DoG operator
allows to tune the amount of smoothing in the filter. This
solution is more adapted to problems were the modalities
between the images are strongly different, like in [18] or
[37]. Again in this application, the panchromatic, the red,
the blue, and the green images are already well corre-
lated such that discarding the radiometric properties in
the warp estimator is still fine. The CVPR method M6
gives mixed results; if a more informative prior on the
attitude variations may improves the registration process,
radiometric corrections are undoubtedly better to con-
sider. To its credit, the autoregressive model usually
needs long term signals to efficiently learn its coefficients,
which could not be the case here on the small chunks of
512 time samples.

Fig. 5 shows images registration and attitude estimates
results for datasets D3 and D4; they were obtained with
method M4 on large portions of images (2,400 x 240 pixels)
in few minutes. One can notice two different frequency con-
tents between both datasets, the amplitude of the angles
which is of several microradians, the corresponding ampli-
tude of the warps on the images as given by the thin white
strip which delimits the size of a pixel, and the error
between the estimate and the groundtruth.

Fig. 6 presents a (130 x 130) color image patch from D1
before and after the registration process. Bleeding artifacts
are visible on the edges of the left image (especially on the
white shape) due to the attitude variations, those are cor-
rected on the right image.

Fig. 7 summarizes the benefits of taking into account the
radiometric differences between two multispectral images.
Images i and j,, respectively from the panchromatic and the
red channels of D1, look pretty similar but the difference
li — jy| clearly brings out their different nature. After radio-
metric rectification with a and b, the statistics of the error
|a + bi — j,| are much closer to a random Gaussian noise.

6.5 Statistics of Estimators

Given Table 2, one may ask whether those results could be
obtained repeatedly and with fewer pixels. To this task, we
randomly extracted patches of images from dataset D1 of
size (512 x n;), where n; is a varying number of pixels along
the pushbroom camera axis, and ran all the methods
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Fig. 5. Results for datasets D3 (a) and D4 (b) using method M4; on the top is the warped image acquired by the satellite (panchromatic in both cases).
The error images are the pixels intensity substraction between the undistorted panchromatic image (the one the satellite should have recorded if it
was not oscillating; it is the groundtruth) and respectively: the acquired panchromatic image (top), and the rectified panchromatic image (bottom)
after attitude estimation. Bottom plots display estimated roll and pitch in black curves with the error with respect to the real attitude in gray curves; the

thin white strip delimits the size of a pixel.
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color image patch (130 x 130) D1

before registration after registration

Fig. 6. Color image patch from dataset D1 before and after the registra-
tion process. Several bleeding artifacts occur on the edges of the left
image due to the attitude variations. Those are corrected after the regis-
tration process on the right image.

100 times for a given n,; to get an average error € and a stan-
dard deviation o, of the criterion (41) for each estimator.
Results are visible in Fig. 8.

One can see that method M3 has both the best perform-
ances in terms of mean and variance of the error, followed
closely by Mj. The approximation scheme in the two step
algorithm does not decrease the performances of the estima-
tor when n; > 15 while being four times faster than the
global algorithm.

7 DISCUSSION AND EXTENSIONS

We have presented a complete framework for attitude
variations estimation of a satellite using the images it
has recorded with its pushbroom sensors. It makes use
of the acquisition process geometry, it automatically
deals with radiometric differences between the multi-
spectral images and insures a high accuracy estimation
of the warps. It efficiently solves the problem in a

i A
;
LYYy

b

la+ bi — jgl

0.2

Fig. 7. Comparison between two image patches i and j,, of size
(100 x 100) pixels from the panchromatic and the red channels of D1,
after the registration process of method M3. The error image
|]a + bi — j,| is much closer to a random Gaussian noise than |i — j,|.
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Fig. 8. Performances of the methods with respect to the number of hori-
zontal pixels n; in the images. Results were averaged over 100 runs on
randomly chosen image patches from dataset DI at a given size of
(512 x m;) pixels.

Bayesian formalism which allows to: use priors for the
attitude variations and the radiometric coefficients, auto-
matically learn the hyperparameters of the model, and
marginalize the radiometric coefficients while keeping a
good accuracy. The experimental part motivates the
choice of the method M4.

The main challenge with satellite datasets is to effi-
ciently use the large amount of data which is composed
of multiple gigapixel images. For instance, instead of
aligning all the images of the focal plane, one could
choose the best pair of images for which the correspond-
ing kernel spectrum, as given in Fig. 4, includes the
frequencies of the attitude variations. Another solution
could be to select the image patches with the appropriate
number of pixels n; along the camera axis to estimate
the attitude variations with a good confidence value.
However to our best knowledge, there is no clear answer
to this question in the pixel based image registration liter-
ature, though this was a great concern for feature based
techniques like in [38]. The main difficulty is that the esti-
mator performances is linked to the image content, which
is somehow intuitive but greatly demonstrated in [36]
using the Cramer Rao bound. There should be a link
between the image content and the number of pixels n; to
use in the registration process which insures an estimator
with a sufficiently small variance.

Another future research perspective could be to better
understand the warp function W, as it is currently numeri-
cally approximated. Given an analytical model for this func-
tion and the amount of data, one may be able to jointly
estimate the attitude variations of the satellite as well as the
elevation map of the scene.
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