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Abstract

Linear pushbroom cameras are widely used in passive
remote sensing from space as they provide high resolution
images. In earth observation applications, where several
pushbroom sensors are mounted in a single focal plane,
small dynamic disturbances of the satellite’s orientation
lead to noticeable geometrical distortions in the images. In
this paper, we present a global method to estimate those
disturbances, which are effectively vibrations. We exploit
the geometry of the focal plane and the stationary nature of
the disturbances to recover undistorted images. To do so,
we embed the estimation process in a Bayesian framework.
An autoregressive model is used as a prior on the vibra-
tions. The problem can be seen as a global image registra-
tion task where multiple pushbroom images are registered
to the same coordinate system, the registration parameters
being the vibration coefficients. An alternating maximisa-
tion procedure is designed to obtain Maximum a Posteriori
estimates (MAP) of the vibrations as well as of the autore-
gressive model coefficients. We illustrate the performance
of our algorithm on various datasets of satellite imagery1.

1. Introduction
Over the last decade, pushbroom sensors have found in-

creasing utility in several applications, ranging from passive

remote sensing for earth observation, 3D inspection of con-

tainers for security, medical scanners for x-ray imagery to

the personal flatbed scanner. Concerning its principle, the

pushbroom camera is a linear sensor that takes 1-D images

at several time instants. The sensor sweeps out a region of

space; stitching together all 1-D images gives a complete

2-D image of the observed scene. This acquisition process

is summarised in figure 1(a). As a result of this process,

pushbroom sensors have the advantage of providing higher

resolution images than classical perspective cameras. This

1This work was funded by EADS Astrium (European aerospace com-

pany and satellite manufacturer)

was especially true in the past when digital cameras were

first appearing; still nowadays, cameras used for earth ob-

servation usually record up to 25, 000 pixels in a single line.
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Figure 1. (a) Pushbroom acquisition principle: the camera is mov-

ing straight along the x axis and recording 1-D images over time

denoted by n; y is the camera axis and z the orthogonal axis to

the image plane. We define the orientation of the camera with the

yaw (rotation about z), the roll (rotation about x) and the pitch (ro-

tation about y). (b) Example of warps in a regular checkerboard

when the pushbroom camera is tilting around its 3 rotation axes.

The recorded image is therefore a concatenation of 1-D

images. This image is a non-distorted view of the observed

scene only if the camera is moving at a constant speed and

orientation (distortion in the pushbroom case refers to geo-

metrical warps due to camera motion). Otherwise, geomet-

ric warps influence the acquisition process, and the image

has to be corrected to properly represent the scene. This

correction can be performed once the camera poses are esti-

mated. When the sensor is fixed on a motorised support that

ensures a constant speed and orientation, it is possible to es-

timate the position and orientation of the camera , assuming

that its calibration parameters are constant over time [9, 6].

In airborne and spaceborne imagery, such assumptions

of constant motion and orientation are violated since the

craft is exposed to dynamic disturbances during the acquisi-

tion process. Those vibrations are caused by the engines as

well as athmospheric and space turbulence. This becomes

1
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especially true with the recent manufacture of small satel-

lites whose high sampling resolution makes these dynamic

perturbations even more probable and critical. Even if a

drift in the platform position can be recorded by GPS sen-

sors and thus rectified, variation of the attitude 2 is harder

to detect and leads to noticeablet geometric distortions in

the acquired image. Figure 1(b) shows an example of warps

in the image when the camera orientation is changing over

time; we define the three components of the attitude, the

yaw, the roll and the pitch as the rotations around the x, the

y and the z axis respectively, as shown in figure 1(a).

Current solutions use inertial sensors to retrieve the atti-

tude of the platform [3, 16]. Apart from being very costly

for space applications, the sampling frequency of such sen-

sors (4Hz) is usually lower than the sampling frequency of

each 1-D image of the pushbroom camera (2, 500Hz). Thus,

high frequency disturbances cannot be recorded by those

sensors and may not be rectified on the image.

In this paper, we present an original method to estimate

the attitude variations of the pushbroom camera during the

acquisition process in order to rectify each 1-D image. To

do so, we rely on information acquired by the camera only.

We exploit the specific geometry of the spaceborne plat-

form where several pushbroom cameras are mounted in a

same focal plane to get images of different modalities (sec-

tion 3). The estimation process is embedded in a Bayesian

framework, allowing us to combine an image data term and

a prior vibration model (section 4). The data term describes

a global registration of all images, the registration param-

eters being the vibration coefficients. The prior model ac-

counts for the stationary properties of the vibrations and is

expressed by an autoregressive model. The resulting algo-

rithm (section 5) is an alternating maximisation procedure,

whose all parameters are automatically estimated. This pro-

cedure is designed to obtain Maximum a Posteriori esti-

mates (MAP) of the vibrations as well as of the autoregres-

sive model coefficients. The knowledge of vibrations makes

possible the rectification of the acquired images, while the

knowledge of the autoregressive coefficients allows us to

retrieve the vibrations in the case of unreliable image data

such as clouds and sea.

2. Related work

Pushbroom cameras have been much less studied than

the classical perspective cameras. Few works have been

done on pushbroom camera calibration; [9] is probably one

of the most important as the authors derive a simple model

which allows to relate several pushbroom cameras observ-

ing a common scene with a matrix analogous to the fun-

damental matrix. More recently, a linear method that uses

2usual name for the orientation of the air and space vehicle in flight

dynamics science defined by the yaw, the roll, and the pitch

homographies induced by the images of a planar object has

proved to be simple and efficient for estimating calibration

parameters [6]. These approaches cannot be applied to the

context of spaceborne applications for two main reasons:

first, these methods relate to the configuration of a sensor

mounted on a fixed platform while the spaceborne platforms

undergo vibrations; second, a large part of the calibration

parameters such as the position of the satellite or the focal

length are known, and the remaining parts to be estimated

are the vibrations themselves.

Therefore, in the context of earth observation, most of

the research focuses on fusing inertial sensors mounted on

the craft to get a good estimate of the camera orientation

[3, 16]. However, such sensors do not guarantee that vi-

brations are fully estimated, as their sampling frequency is

lower than the frequency of acquisition of 1-D images. The

possibility of using only image information to accurately re-

trieve the satellite vibrations is of great interest for satellite

manufacturers as it would reduce the price of the craft.

To our best knowledge, there is only one paper that de-

scribes a solution to estimate the vibrations directly from

images [4]. This approach is based on a local feature ex-

traction on each 1-D image, that are further put into corre-

spondence using correlation techniques for every pair of 1-

D images. This allows the estimation of a relative vibration

for each pair. The absolute vibration is finally recovered us-

ing a Wiener filtering process. As this algorithm is based on

a local principle, it suffers from four main drawbacks: (a)

this method does not account for the linear geometry of the

camera as each feature in a same line of pixels is treated in-

dependently; (b) the case of no detected features can occur

when the satellite is orbiting over textureless regions like

sea, mountains with snow or clouds; (c) priors or sensor in-

formation cannot be easily added to the estimation process

and (d) this procedure does not estimate directly the abso-

lute attitude vibrations, as it first produces the set of relative

vibrations that have to be filtered in a second step. Each

relative vibration is calculated from each image pair and the

global coherence is not ensured.

We believe that the problem of estimating absolute vi-

brations from image information can be handled with more

appropriate methods, which are known to be effective in do-

mains like super-resolution or optical flow estimation. First,

we use pixel-based methods [13, 10, 1, 18] to register im-

ages, as they are more suited to estimate sub-pixel motion

making optimal use of every pixel in the image [18]. Then

the registration process is performed over all images in a

global manner as this has been shown to give more accu-

rate results for super-resolution applications [7]. Finally, as

vibrations mainly originate from the engines of the space-

craft, we use an autoregressive prior [5, 14] to retrieve the

warps between images.
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3. Image acquisition system
In spaceborne applications, several pushbroom cameras

are fixed in parallel on the focal plane of the satellite. Those

cameras record different spectral bands, which are com-

monly red, blue, green and panchromatic bands for earth

observation. Due to the geometry of the focal plane, the

four cameras are not observing the same part of the scene

at the same time instant, as can be seen in the figure 2. In

this example, what is seen by the blue camera at time n is

supposed to be seen at time n + τ12 by the panchromatic

one. We can also notice lines of sight which are defined

as projections of the linear sensor onto the observed scene.

Attitude changes of the focal plane during the acquisition

lead to varying position of each line of sight; thus images

become irregularly sampled. We will see in the next sec-

tion that we can globally register the set of images using the

geometry of the focal plane.

Figure 2. Standard focal plane geometry of observation satellite

with 4 pushbroom cameras: panchromatic, blue, green and red (re-

spectively enumerated as 1,2,3 and 4). What is seen by the camera

2 at time n will be seen by the camera 1 at time n + τ12.

This registration problem is rather difficult if only image

information is used and no prior information. If we consider

the case of a single pushbroom camera, then the problem is

highly ill-posed: roll angles alone could be reasonably well

estimated (in this special case, one can notice that the prob-

lem has similarities with the rolling shutter effect [12]), but

variations in pitch and especially yaw, are difficult to re-

cover. Methods that try to estimate all angles by maximis-

ing the similarity of neighboring pixels across successive

1-D images, typically result in making the dominant visible

edges in the scene straight in the final rectified image, even

if they correspond to curved roads. In our case we have two

means for overcoming this: the presence of several push-

broom sensors makes all these angles observable by corre-

lating all images. However, depending on the amount and

especially the frequency of attitude variations, these corre-

lations may or may not be sufficiently strong. Thus, we also

use prior knowledge on the modeled phenomenon, here the

assumption of its stationarity.

In this paper, we denote the set of 4 images (red, blue,

green and panchromatic) as I = {I1, I2, I3, I4}. Each im-

age is defined by its pixel coordinates (y, n) in the pixel set

S, with n ∈ [0, N − 1] being the discretised time and N the

total number of time steps which is also equivalent to the

number of lines in the acquired images. We call θ(n) ∈ Θ
the unknown attitude of the satellite at time n; it is a (3×1)
vector whose components are respectively the yaw θy(n),
the roll θr(n) and the pitch θp(n). We call θ the (3N × 1)
vector that gathers all attitudes for all time instants. Also,

as explained in the beginning, we use a model as a prior to

infer the vibrations in a Bayesian setting; we denote by a
the vector of parameters for this model.

4. MAP formulation
The Bayesian formulation allows us to describe the prob-

lem in a suitable manner; we seek to maximise the a poste-
riori probability of the vibrations θ and parameters a given

the observation of images I. This yields:

(θ̂, â) = argmax
θ,a

p(θ,a|I)

= argmax
θ,a

p(I, θ,a).

The joint probability can also be expressed as:

p(I, θ,a) = p(I|θ,a) p(θ|a) p(a). (1)

The prior over the autoregressive coefficients p(a) is as-

sumed to be uniform. We assume that the knowledge

of vibrations fully explains the likelihood of images i.e.

p(I|θ,a) = p(I|θ). This term represents the likelihood of

the images depending on the vibrations which is usually re-

ferred to as data term, whereas the second term in eq. (1)

p(θ|a) represents a prior on the vibrations.

4.1. Image data term

For the sake of clarity, we will first assume that all im-

ages are of the same modality (in the sense that images

are radiometrically calibrated). Our strategy to handle the

multi-modal case will be discussed in the results section

(section 6). Also, we start by comparing two images and

will derive a global formulation thereafter.

Given I1 and I2 spaced by τ12 in the focal plane (see figure

2), if the two images are perfectly aligned, i.e. if the satel-

lite does not undergo any vibrations, we expect to have the

following relationship:[
I1(y, n)− I2(y, n + τ12)

]
∼ N (0, σ2

i ), (2)

where σ2
i is the variance of a zero mean Gaussian acqui-

sition noise i.i.d. over all pixels in images. As explained
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earlier, a small variation in the satellite attitude induces a

geometric distortion in the images. Formally, this distor-

tion can be expressed by the use of a warp function W that

maps the pixel coordinates to a new position depending on

the attitude of the pushbroom camera [1]:

W : S ×Θ → S
W (y, n; θ(n)) = (y′, n′).

Since vibrations occur at every time instant, eq. (2) has to
be modified to better reflect the observed images:»
I1

`
W (y, n; θ(n))

´−I2

`
W (y, n+τ12; θ(n+τ12))

´– ∼ N (0, σ2
i ).

Fixing I1 as the reference image, this expression is equiva-
lent to the following one:»
I1(y, n)−I2

`
W (y, n+τ12; θ(n+τ12)−θ(n))

´– ∼ N (0, σ2
i ).

(3)

From the previous equation, one can notice that:⎛
⎝ θy(n + τ12)− θy(n) = (θy ∗ k12)(n)

θr(n + τ12)− θr(n) = (θr ∗ k12)(n)
θp(n + τ12)− θp(n) = (θp ∗ k12)(n)

⎞
⎠ ,

where ∗ denotes the convolution operator and

k12 = [−1 0 . . . 0︸ ︷︷ ︸
τ12−1 zeros

1] (4)

is a kernel built upon the time gap between the acquisition

of I1 and I2; this time gap is also corresponding to the spa-

tial gap between the sensors on the focal plane. This basi-

cally shows that trying to estimate θ from any pair of images

{Ii, Ij} acquired by the focal plane leads to the non blind

deconvolution of θ by a kernel kij . This kernel depends on

the time delay between the recording of Ii and Ij like in

expression (4).
In a global formulation, let I

τij

i (y, n) = Ii(y, n + τij)
be the shifted image in time with factor τij , y = [y, n] the
vector of pixel coordinates, and Kij the matrix convolution
operator with kernel kij , then the log-likelihood arises im-
mediately:

log(p(I|θ)) ∝
X

i,j;i�=j

X
y∈S

“
Ii(y)− I

τij

j

`
W (y; Kijθ)

´”2

+ cst.

(5)

This last equation is the expression of a pixel-based reg-

istration method, also known as the Lucas-Kanade method

[13, 1]. The outer sum takes into account all possible pairs

of images while the inner one is a summation over all pix-

els in the images. The additional constant term refers to the

normalizing term of the Gaussian p.d.f. which is indepen-

dent of θ, and thus of no importance for the minimization

procedure. Let us stress that this expression relates the ab-
solute vibrations to all image data, thus ensuring the global

coherence of the estimation with respect to all image pairs.

f1 f2 f3
Frequency

P
ow

er

 

 
signal
5
10
20
40

Figure 3. Autoregressive modeling of a signal (sum of three fre-

quencies f1, f2 and f3) in the frequency domain for several orders

(p = 5, 10, 20, 40).

4.2. Vibration prior model

Variations in the attitude of the satellite are mainly due

to its engines. Modelling such a vibration process is a

challenging problem in the signal processing literature and

more particularly in monitoring of structural and mechan-

ical systems [5, 2]. Typical approaches use time series,

time-frequency and modal analysis to detect a failure in a

mechanical system where several engines are rotating and

thus vibrating; the main assumption on the vibration pro-

cess is its stationarity, in the sense that it keeps the values of

its harmonic frequencies constant over time. Thus, a failure

is recorded if those stationary properties are changed.

One effective and commonly used solution is the autore-

gressive model where a signal (vibration) is modeled as a

linear combination of its past values [14, 15]. This yields

for n ∈ [0, N − 1]:

θ(n) = −
p∑

k=1

akθ(n− k) + ε(n), (6)

where ak for 1 � k � p, are the parameters of the model

and p its order. ak is a (3 × 1) vector whose components

account for the yaw, the roll and the pitch, and a is the (3p×
1) vector gathering all ak: a = [a(1) : a(p)]T . ε(n) is taken

here to be a zero mean i.i.d. Gaussian noise with variance

σ2
a. This model is linked to linear filtering theory and is

widely used to predict or filter stationary time series [14, 19,

11]. In the frequency domain, it is easier to see the effect of

the autoregressive model which tries to fit the spectrum of

the signal depending on its order as can be seen on figure 3.
Let A be the (N − p ×N) matrix operator with the au-

toregressive coefficients:

A =

2
64

a(p) a(p− 1) ... a(1) −1 0 ... 0
...

. . .
...

0 ... 0 a(p) a(p− 1) ... a(1) −1

3
75

Thus the logarithm of the a priori vibration model can be

expressed as:

log(p(θ|a)) ∝ ‖Aθ‖2 + cst, (7)

where the constant term accounts for the normalizing factor

of the Gaussian p.d.f..
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5. Algorithm
Our goal is to estimate realisations of θ and a that max-

imise the defined a posteriori distribution p(θ,a|I). How-
ever, this global optimization problem has in general no
straightforward solution. Thus, we consider instead an iter-
ative approach consisting in maximising the posterior prob-
ability alternatively in the first and second variable. Starting

from current estimates θ(t) and a(t) at iteration t, we con-
sider the following two-step updating:

I. Estimation of a(t+1)

a(t+1) = argmax
a

p(θ(t),a|I) = argmax
a

p(θ(t)|a).

II. Estimation of θ(t+1)

θ(t+1) = argmax
θ

p(θ,a(t+1)|I)

= argmax
θ

p(I|θ) p(θ|a(t+1)).

Convergence to a local maximum is guaranteed since the

posterior probability is increasing at each step:

p(θ(t),a(t)|I) ≤ p(θ(t),a(t+1)|I) ≤ p(θ(t+1),a(t+1)|I).
(8)

The first step consists in estimating the autoregressive

coefficients a(t) from the current vibration estimate. This is

done using the autocorrelation method, also known as the

Yule-Walker equation [14]. The order of the model p is

chosen using the Akaike criterion [14].

Deduced from eq. (5) and (7), the second step consists

in the minimization over θ of the following equation:

∑
i,j;i �=j

‖Ii(y)− I
τij

j

(
W (y; Kijθ)

)‖2 + λ‖Aθ‖2, (9)

where λ is a real scalar proportional to the fraction between

the noise variance in the data and the noise variance of the

model; this can also be seen as a trade-off between the data

and the model term. In practice, a cross validation method is

used to estimate this parameter. Eq. (9) has to be minimised

iteratively due to its non linear form. We choose a Gauss-

Newton algorithm to estimate θ for its good performances

in registration methods [1]. However, any other non linear

least squares method could be used. Using a gradient de-

scent procedure does not necessarily require the knowledge

of an analytical form of the warp W as long as derivatives

of the warp ∂W
∂y and ∂W

∂n are available. In the pushbroom

case, we can derive an analytical expression of W (which

is quite similar to the perspective case) as long as the ob-

served scene is flat. In the opposite case when the scene has

ground elevation, the warp function depends on the scene

and the expression of W is much more complex. In our

experiments, we use numerical derivatives of W ; this has

several advantages as Digital Elevation Model (DEM) and

Initialisation:

• a(0) = 0, λ(0) = 0, p(0) = 0, I(0) = I

• Δθ(0) = minimize 1step Eq9(I(0),a(0), λ(0))

• θ(0) = Δθ(0)

Set t=1

I: 1. p(t) = select order(θ(t−1))
(Akaike criterion)

2. a(t) = select AR coefficients(θ(t−1), p(t))
(autocorrelation method)

3. if t = 1, then λ(t) = select parameter(I,a(t))
(cross validation)
else λ(t) = λ(t−1)

II: 4. Δθ(t) = minimize 1step Eq9(I(t−1),a(t), λ(t))

5. θ(t) = θ(t−1) + Δθ(t)

6. I(t) = warp images(I, θ(t))

7. t = t + 1, till Δθ(t) < ε

Figure 4. Algorithm

optical distortions of the lens can be directly added to those

numerical derivatives. Finally, the whole algorithm can be

summarized in the scheme on figure 4.

One can notice that in practice, the algorithm computes

only one step of the gradient descent at step 4 of the algo-

rithm. Nevertheless, the algorithm convergence is ensured

as equation (8) still holds.

6. Experimental results
In this section, experimental results are presented to

highlight the relevance of our algorithm. Two satellite

datasets are studied. They both have been simulated by

EADS Astrium, meaning that the ground truth on vibrations

is available. The simulation process creates real-life condi-

tion data as it takes into account effects from camera acqui-

sition noise, ground elevation, radiometric distortions, and

mechanical vibration conditions. This data can therefore be

considered as difficult as could be real data.

Each dataset is composed of 4 multispectral images:

green, red, blue and panchromatic. All images are of size

(2564 × 900) pixels; the pushbroom sensor size being 900
pixels. For all experiments we use a Matlab implementation

on a Core2 duo at 3GHz with 3.8GiB. The algorithm con-

verges in 4 iterations and we obtain a computational time

below 100 seconds for both datasets.

To handle the different modalities of images, we tried

two approaches; the first is to prefilter images with a high-

pass filter to extract dominant information, and the second

is to correct radiometric differences between images using
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a linear model before the registration process. Both showed

better results than processing raw images directly. However,

the second method performed slightly better than the first

one. We presume two reasons according to that observation.

High-pass filtering usually increases the noise level and as

a consequence can decrease the accuracy of the registration

process. Moreover, panchromatic and RGB modalities are

quite well correlated by default contrary to, for example, in-

frared or radar modalities. Thus, a linear radiometric model

is enough in this case to correct images. We use the second

solution to present the following results.

The first dataset corresponds to a focal plane where cam-

eras are equally spaced by 20 time samples, which is equiv-

alent to 20 lines of pixels in the images. During this ex-

periment, λ is estimated to be 9.1011 and the autoregressive

order p is in a range between [294, 320] depending on the

iteration.

Figure 5 shows image registration results, the roll and

pitch estimations compared to the ground truth over time,

and the autoregressive prior spectrum compared to the

ground truth spectrum at the first and last iterations. As can

be seen on figure 5, the error on the vibration estimation is

negligible: the standard deviation between the estimate and

the ground truth is below 7
100 in pixel unit, either for the roll

and the pitch. One can notice on figure 5 that from the first

iteration, the shape of the prior is fitting well the ground

truth spectrum, though one low frequency is missing. This

low frequency is recovered in the following iterations as can

be seen in the final autoregressive spectrum.

Let us remark that no estimation of the yaw is given, as

in that experiment, the yaw causes pixel deformations lower

than 2
100 pixel on each vertical side of the images (litterature

shows at best pixel accuracy of 1
100 in mono-modal and 5

100
in multi-modal cases [8, 17]). These deformations are dom-

inated by geometrical distortions induced by the roll and

pitch. The same effect can be observed for the second ex-

periment.

The second example shows a challenging case as the vi-

bration signal has more low frequency components. Due

to the convolution kernels kij (Eq. (4)), most of the low

frequency information is lost and the deconvolution pro-

cess becomes highly ill posed. In this dataset, cameras

are spaced by 33.5, 40 and 20 time samples following the

scheme in figure 2. In that case, λ is estimated to be

1010 and the autoregressive order p is in a range between

[169, 205] depending on the iteration. Figure 6 shows image

registration results and attitude estimates as in the previous

dataset, as well as the spectrum of the autoregressive model

for the first and last iterations. The standard deviation be-

tween the estimate and the ground truth is below 6
100 in pixel

unit, either for the roll and the pitch. Our algorithm still per-

forms well as can be seen in the residual curves (drawn in

red in figure 6). Thus, the autoregressive prior helps reg-

ularizing the estimate in those frequencies. Still, we can

see that the autoregressive model gives a rough estimate of

the low frequencies whereas higher frequencies estimate is

much more accurate.

These experimental results demonstrate the performance

of our algorithm. The autoregressive prior regularizes the

solution even though the low frequencies are lost in the con-

volution process, and is particularly accurate in the high fre-

quencies. In general we notice that the method presents very

good results in high frequency estimation, which can not be

obtained by the use of inertial sensors alone, as they only

provide low frequency information. We still need to con-

duct more experiments on lower frequencies with broader

pixel warps. Being more accurate on low frequencies us-

ing the autoregressive prior would imply to work on much

longer time acquisition of images. Learning those coeffi-

cients to get a better prior is a part of our future work. Also,

our next step will be to fuse measurements from images and

inertial sensors so as to get the best estimate of attitude vari-

ations for all frequencies. The Bayesian setting we used

easily allows us to combine prior as well as observations by

other sensors in a coherent manner.

7. Conclusion

In this paper, we have presented a novel and efficient

algorithm for estimating attitude variations of pushbroom

cameras, that can be applied in spaceborne imagery. The

definition of such an algorithm, that demonstrates the pos-

sibility of using image information to accurately retrieve the

satellite vibrations, is of great interest for satellite manufac-

turers. The very promising results have demonstrated the

interest of combining a global registration technique on all

images to an autoregressive model for the estimation of the

absolute vibrations. The estimation of the prior coefficients

is one of the algorithm’s key-points as it enables the image

correction in case of difficult data like clouds, or sea. In a

future work, the flexibility of our Bayesian setting will en-

able us to investigate the fusion of information from images

and inertial sensors.
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Figure 6. Dataset 2 results: the top figure is a (150×1700) image patch of the red camera. Below, the following two figures show intensity

differences between the real image and the acquired image before and after registration. Then, the first graph presents the sum over y of

absolute error image before and after registration depending on the time. The next two graphs draw attitude variation estimate in radian for

the roll and the pitch in blue and the error compared to ground truth in red. The last figure is the spectrum of the autoregressive model at

the first and last iterations compared to the ground truth spectrum in green.
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