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ABSTRACT

Most existing architectures for the compressive acquisition of hy-
perspectral imagery—which perform dimensionality reduction si-
multaneously with image acquisition—have focused on framing de-
signs which require the entire spatial extent of the image be avail-
able at once to the sensor. On the other hand, hyperspectral im-
agery in remote-sensing applications is frequently acquired with a
pushbroom or whiskbroom sensing paradigm which—incorporating
line-based or pixel-based scanning, respectively—exploits the mo-
tion inherent in an airborne or satellite-borne sensing platform to
acquire the image. Such pushbroom and whiskbroom sensing archi-
tectures are proposed for the compressive acquisition of hyperspec-
tral imagery. Additionally, the necessity of employing multiple sen-
sor arrays in order to sense a broad spectrum, including the infrared
regime, is considered.

Index Terms— compressed sensing, hyperspectral imagery, re-
mote sensing

1. INTRODUCTION

The recent advent of compressed sensing (CS) has served as the im-
petus for a number of CS-based image-sensor designs which effec-
tively apply linear projections in the optical domain such that di-
mensionality reduction occurs simultaneously with image sensing
and acquisition. While initial designs focused on the compressive
acquisition of single-band, or grayscale, imagery (e.g., [1-4]), sub-
sequent work (e.g., [5S—10]) has considered the compressive acquisi-
tion across a multitude of spectral bands, particularly for the case of
hyperspectral imagery—see [11] for an overview. In brief, a hyper-
spectral image is a volumetric (or 3D) imagery dataset consisting of a
spatial array of vector-valued pixels. Each hyperspectral pixel vector
typically consists of several hundred optical-spectrum samples from
contiguous wavelength channels (bands), typically ranging from the
near-ultraviolet to the short- or long-wave infrared.

While hyperspectral imagery has been employed in a wide range
of application settings, there is great interest in hyperspectral remote
sensing of the Earth’s surface due to the fact that the large spectral
resolution of the resulting imagery permits detecting, distinguishing,
and identifying materials remotely over long distances [12]. Typ-
ically, hyperspectral remote-sensing sensors are mounted on some
type of airborne or satellite-borne platform. While some such plat-
forms are static—such as an aerostat or geosynchronous satellite—
and, consequently, permit imaging only a fixed spatial region on the
Earth, more commonly hyperspectral remote-sensing sensors reside
on moving airplanes or satellites and image vast spatial areas of the
Earth along the platform flight line. As a consequence, hyperspec-
tral sensors for remote sensing are often of a scanning design that
acquires individual pixels—or entire lines of pixels—sequentially,
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exploiting the motion of the sensor platform to provide the requi-
site down-track scanning [12]. Such scanning designs are typically
categorized as “whiskbroom” or “pushbroom” according to whether
they employ pixel-based or line-based scanning, respectively [12].

Most existing designs for compressive hyperspectral sensors
(i.e., [5-10]), however, have focused on “framing” acquisition. In
a framing sensor, the entire 2D spatial extent of the scene is im-
aged at once. In remote sensing, such framing sensors best suit
aerostat or geosynchronous platforms. Consequently, there is need
for compressive sensor designs that are based on pushbroom and
whiskbroom scanning in order to permit compressive hyperspectral
image acquisition from moving airplane and satellite platforms.

In this paper, we propose two conceptual designs for compres-
sive hyperspectral remote-sensing sensors, one for each of the push-
broom and whiskbroom scanning paradigms. We first overview ex-
isting compressive hyperspectral sensing architectures next, subse-
quently presenting our proposed pushbroom and whiskbroom de-
signs in Secs. 3 and 4, respectively. We then consider the issue of
imaging across a broad spectral range using multiple sensor materi-
als in Sec. 5 before making concluding remarks in Sec. 6.

2. BACKGROUND

Perhaps the most widely invoked architecture for compressive imag-
ing is the well-known “single-pixel camera” (SPC) [1-4] depicted
in Fig. 1 and used for the acquisition of a 2D grayscale (i.e, single-
band or panchromatic) image. In essence, the SPC uses a digital
micromirror device (DMD) to optically perform an inner product be-
tween the measurement pattern on the DMD and the image being ac-
quired, the photosensor outputting the corresponding measurement
value as an analog voltage. The measurement pattern on the DMD is
changed and the process repeated until the desired number of mea-
surements is obtained, implying that the imaged scene remains static
during the time it takes to acquire the consecutive measurements.

A number of compressive hyperspectral sensors have been based
on the SPC framework; notably, [S] simply replaces the single pho-
tosensor in Fig. 1 with a spectrometer, which produces a separate
measurement value for each spectral band. The spectrometer is im-
plemented as a spectral dispersion followed by a linear array of pho-
tosensors. Effectively, this architecture applies the same compres-
sive measurement process simultaneously and in parallel to multiple
spectral bands; consequently, the acquisition is compressive in the
spatial direction only.

An alternative approach—that of applying compressive acquisi-
tion exclusively in the spectral direction—was adopted in the coded-
aperture snapshot spectral imager (CASSI) [6, 7] which uses spectral
shearing of a hyperspectral image cube along with a coded aperture
to effectuate a compressive projection of each spectral pixel in the
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Fig. 1. The SPC [1-4] for the compressive acquisition of single-band
image (figure adapted from [21]).

image; multiple snapshots with distinct aperture codes [8] yield mul-
tiple measurements for each pixel vector. It should be noted that the
CASSI architecture requires an array of photosensors of the same
size as the spatial dimensions of the image acquired, in contrast to
the simpler linear array employed in [5]. Several variants of the
CASSI architecture have been proposed, including a single-disperser
design [9] as well as a DMD-based implementation [8].

Finally, [10] proposes hyperspectral image acquisition that is
compressive in both the spatial as well as spectral directions. In
short, the compressive hyperspectral imaging by separable spectral
and spatial operators (CHISSS) system replaces the single photo-
sensor in the traditional SPC architecture with a separate spectral-
encoding subsystem; this spectral encoding will be described in
depth in Sec. 4 later.

One characteristic common to all of the aforementioned sys-
tems is their reliance on framing acquisition; i.e., they image the
entire 2D spatial extent of the acquired scene at once. However,
many remote-sensing applications require the use of sensors which
acquire imagery using a spatial-scanning process due to their place-
ment on moving airborne or satellite-borne platforms. Consequently,
we propose architectures for compressive pushbroom and whisk-
broom sensing in the sequel. Like [6], the proposed designs are
compressive in the spectral direction only; however, the pushbroom
or whiskbroom scanning eliminates the need to access the entire spa-
tial extent of the image as the framing design of [6] does. We note
also that spectrally compressive acquisition permits certain opera-
tions (e.g., anomaly detection [13, 14], classification [15-18], and
target detection [14, 15, 19,20]) to be conducted without requiring
dataset reconstruction.

3. PUSHBROOM SENSING

The pushbroom paradigm is a popular scanning strategy among tra-
ditional hyperspectral sensors for remote sensing, being used by the
HYDICE, CASI, and Hyperion systems, among others [12,22]. The
hallmark of pushbroom sensing is that an entire line, or row, of the
hyperspectral imagery is acquired at once, with the motion of the air-
borne or satellite-borne platform providing the down-track scanning
[12].

A pushbroom architecture for the compressive acquisition of hy-
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perspectral imagery is depicted conceptually in Fig. 2. This sensor
is centered around a DMD, while a spectral-splitting device (e.g., a
prism) spreads a single line from a slit aperture across the DMD, the
reflections of which are focused onto a line of photosensors through
a cylindrical lens.

Mathematically, let the current line from the hyperspectral im-
age contain M pixels, x,,,, 1 < m < M, with each pixel consisting
of N spectral bands; i.e., X, € R”. The compressive acquisition
of pixel X,, produces measurement vector y,, = PZ x,,, where
compressive measurement matrix P, is of size N X K, K < N,
and y,, € R*. Here, we assume each hyperspectral pixel vector
X, possesses its own measurement matrix P, , although the same
matrix could be used for all pixels'.

In the pushbroom sensor of Fig. 2, each column of the DMD
performs the inner product of the corresponding hyperspectral pixel
vector X, against a particular column of P,,. Specifically, at time
k, column k of P,, is placed on column m of the DMD so that
the corresponding photosensor records vector component k of y,,;
this process is repeated in quick succession for 1 < k < K, thusly
assembling the K -dimensional projected vector y,,, from successive
reads of photosensor m in the linear array. This process is conducted
simultaneously on all M columns of the DMD, using for each DMD
column its corresponding P,, matrix, such that y,, is acquired for
all pixels of a single image row simultaneously; afterwards, the sen-
sor advances to the next line, and the process is repeated. We note
that the DMD has size N x M, while the linear array of photosensors
islx M.

The primary disadvantage of the proposed pushbroom architec-
ture is the need for conducting the K measurements successively.
Although modern DMDs are capable of fast operation (DMDs on
the order of 0.1-1 MHz are commercially available), the successive
measurement process effectively cuts the dwell time? of the sensor
by a factor of K as compared to a traditional, non-compressive push-
broom sensor. However, the proposed architecture comes with the
advantage that only a single, 1D linear array of K photosensors is
required, whereas traditional pushbroom sensors require a 2D array
of photosensors of size M x N. Depending on the cost per photo-
sensor, the compressive pushbroom architecture of Fig. 2 may offer
the possibility of dramatically reduced sensor cost, particularly for
imaging outside of the visible range—see Sec. 5 below for more dis-
cussion on this issue.

Finally, we note that [26] suggests pushbroom acquisition be ef-
fectuated by preceding the SPC of Fig. 1 with a diffractive element.
This would result in measurements that are compressive across a
2D spatial-spectral slice of a hyperspectral volume; however, the
dwell time is reduced by a factor of M K as compared to a non-
compressive pushbroom sensor for K spectral bands and M pixels
in the pushbroom line.

4. WHISKBROOM SENSING

In addition to pushbroom, the other scanning paradigm in popular
use in hyperspectral remote sensing is the whiskbroom scan, which
is built on the imaging of a single pixel, or spatial location, at a time.
A rotating mirror is employed to sweep out a scan line perpendicular
to the motion of the sensor platform [12, 22]. As with the pushbroom

I Certain algorithms (e.g., [23, 24]) for the reconstruction of X;,, from y,
require the use of a different measurement matrix per vector.

2The dwell time is the amount of time a sensor element remains over a
particular spatial location that it is imaging. A longer dwell time results in
increased collection of photons and a correspondingly larger signal-to-noise
ratio [12, 25].
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Fig. 2. A compressive pushbroom hyperspectral sensor.

scan, the whiskbroom scan relies on the motion of the airborne or
satellite-borne sensor platform to yield down-track scanning. Tradi-
tional hyperspectral sensors that use whiskbroom scanning include
AVIRIS and HyMap [12, 22].

A whiskbroom architecture for the compressive acquisition of
hyperspectral imagery is depicted conceptually in Fig. 3. As with
the pushbroom architecture of Fig. 2, this whiskbroom sensor is
based on a DMD used in conjunction with a spectral splitter. Ef-
fectively, the architecture shown in Fig. 3 is the spectral encoder
proposed for the separable spatial-spectral compressive imager in
[10]; specifically, the SPC used in [10] for spatial encoding has been
replaced with a pinhole aperture and a rotating scan mirror to effec-
tuate whiskbroom scanning.

In Fig. 3, for a given spatial location, the light emitting from the
pinhole aperture is dispersed by the spectral splitter into a spectral
line which is spread across the DMD as parallel rays by a cylindrical
lens. Consequently, each DMD row corresponds to a different spec-
tral band; meanwhile, a different measurement pattern is placed on
each DMD column. The second cylindrical lens sums across each
DMD column, providing a separate measurement value to each pho-
tosensor in the linear array. The rotating scan mirror then advances
to the next pixel in the line, while the platform motion advances the
scan to the next line.

Mathematically, let the current /N-band hyperspectral pixel vec-
tor being imaged be x € R; the measurement process is again
y = PTx, where y € R and P is of size N x K. Column k of
the DMD performs the inner product of x with column & of P, yield-
ing vector component k of y on photosensor k. Consequently, the
DMD has N rows and K columns; vector y is read from the £ pho-
tosensors of the 1 X K linear array at once. We note that, if the same
matrix P were applied to acquire each pixel vector, the measurement
pattern on the DMD would remain static; in this case, a fixed coded
aperture could be used instead of the DMD. However, use of a DMD
permits a different measurement matrix for each vector’.

The proposed compressive whiskbroom architecture of Fig. 3
offers the advantage over the compressive pushbroom architecture
of Fig. 2 in that all K’ measurements for a pixel are acquired simul-
taneously, obviating the need for the successive acquisition used in
the pushbroom system. Consequently, the compressive whiskbroom

3 Again, as may be required by certain reconstruction algorithms such as
[23,24].
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sensor of Fig. 3 has the same dwell time as a comparable traditional
whiskbroom sensor (which is, however, typically much less than that
of an equivalent non-compressive pushbroom architecture). The dis-
advantages of the compressive whiskbroom architecture are those
inherited from the traditional whiskbroom paradigm, including ge-
ometrical issues stemming from platform stability and mechanical
scanning [12].

5. SENSING OF LONGER WAVELENGTHS

Existing implementations and conceptual designs for compressive
hyperspectral sensors (e.g., [5, 6, 8-10]) assume that a single linear
or 2D photosensor array is used. This consequently implies that a
single detector material—typically, silicon—is employed, thereby
limiting the spectral range of acquisition. While the spectral range of
silicon—0.3 pm to 1.0 yum—encompasses the entire visible range as
well as some of the ultraviolet and near-infrared spectra [12], many
applications in remote sensing make use of the spectrum at longer
wavelengths.

Typically, traditional hyperspectral sensors achieve operation
over a broad spectral range by imaging onto separate sensor arrays,
each constructed from a different material. For example, the AVIRIS
platform employs four distinct sensor arrays, one made from silicon
(Si) detectors, and the other three from indium antimonide (InSb)
detectors [27]. A similar strategy can be adopted for the pushbroom
and whiskbroom architectures proposed here.

Specifically, Fig. 4 illustrates how the linear photosensor array
used in the whiskbroom sensor of Fig. 3 can be replaced by a beam
splitter followed by separate photosensor arrays tailored for acquir-
ing different spectral ranges. Fig. 4 shows specifically acquisition
in the visible as well as near-infrared (NIR) regimes accomplished
with silicon-based photosensors, while acquisition in the short-wave
infrared (SWIR) uses indium gallium arsenide (InGaAs) detectors.
Mathematically, this multiband-acquisition process functions as fol-
lows. Consider the sensing of measurement yy, the k™ component of
measurement vector y. Column k of the DMD in Fig. 3 performs the
inner product of hyperspectral pixel vector x with pg, column k of

measurement matrix P. However, the Si and InGaAs detectors mea-
!

<] and of = pf

the limited spectral ranges of the photosensors effectively split x as

sure only y), = pr {x )?,,}, respectively, where
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Fig. 3. A compressive whiskbroom hyperspectral sensor.
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Fig. 4. Increasing the spectral range of the whiskbroom sensor by
splitting the DMD output to sensors constructed from different ma-
terials (illustrated for sensor k of a 1 X K linear photosensor array
for each material).

/
X
X = [X,,]. Consequently, to form the final measurement y, an

analog summer adds vy, and vy, electrically, yx = a1y} + oy,
where gain parameters a1 and o2 compensate for possible variances
in relative photoelectric sensitivities between the two sensor materi-
als. Additional beam splitters and sensor arrays could be added to
Fig. 4 in order to employ more than two sensor materials, thereby
extending the sensor range into even longer wavelengths. Addition-
ally, Fig. 4 could be used, as is, with the pushbroom architecture of
Fig. 2 to extend its spectral range as well.

We note that, although existing designs for compressive hyper-
spectral sensors (e.g., [5-10]) focus on just a single photosensor ar-
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ray, the basic strategy of Fig. 4 could be applied to these existing
designs as well. However, imaging beyond the near-infrared unfor-
tunately requires materials that are comparatively exotic and, con-
sequently, costly, as such sensors lack the large commercial market
with which silicon is blessed. Additionally, sensors for longer wave-
lengths typically operate at extremely low temperatures, requiring a
significant cost to achieve the required cooling. Consequently, com-
pressive hyperspectral sensor designs that require 2D sensor arrays
that are the same size as the spatial dimensions of the image would
be significantly more costly than the simple 1D linear arrays used
in the pushbroom and whiskbroom design proposed here. Such is
the case of the well-known CASSI [6, 7] architecture and its variants
[8,9].

6. CONCLUSION

In this paper, we proposed designs for compressive hyperspectral
sensors specifically intended for the pushbroom and whiskbroom
scanning that are commonly used for airborne and satellite-borne
remote sensing. These designs stand in contrast to previous architec-

tures which instead employ a framing acquisition and are thus lim-
ited to static (aerostat or geosynchronous) imaging. We also consid-

ered the necessity of employing multiple sensor arrays constructed
from different materials in order to cover a broad spectrum rang-
ing well into the infrared regime. Given that such infrared sensors
require substantial cost due to comparatively exotic sensor material
as well as significant cooling burden, the proposed designs have the
advantage that only a 1D linear array of photosensors need be im-
plemented, while competing designs—namely CASSI [6, 7] and its
variants [8,9]—require a 2D array of sensors matching the spatial
resolution, thereby entailing potentially prohibitive cost.
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