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Hyperspectral imaging (HSI) is an emerging platform technol-

ogy that integrates conventional imaging and spectroscopy to

attain both spatial and spectral information from an object. Al-

though HSI was originally developed for remote sensing, it has

recently emerged as a powerful process analytical tool for

non-destructive food analysis. This paper provides an intro-

duction to hyperspectral imaging: HSI equipment, image ac-

quisition and processing are described; current limitations

and likely future applications are discussed. In addition, recent

advances in the application of HSI to food safety and quality

assessment are reviewed, such as contaminant detection, de-

fect identification, constituent analysis and quality evaluation.
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Introduction
Food process control necessitates real-time monitoring

at critical processing points. Fast and precise analytical
methods are essential to ensure product quality, safety, au-
thenticity and compliance with labelling. Traditional
methods of food monitoring involving analytical techniques
such as high performance liquid chromatography (HPLC)
and mass spectrometry (MS) are time consuming, expen-
sive and require sample destruction. Near infrared spectros-
copy (NIRS) is well established as a non-destructive tool
for multi-constituent quality analysis of food materials
(Scotter, 1990). However, the inability of NIR spectrome-
ters to capture internal constituent gradients within food
products may lead to discrepancies between predicted and
measured composition. Furthermore, spectroscopic assess-
ments with relatively small point-source measurements do
not contain spatial information, which is important to
many food inspection applications (Ariana, Lu, & Guyer,
2006).

Recent advances in computer technology have led to
the development of imaging systems capable of identify-
ing quality problems rapidly on the processing line, with
the minimum of human intervention (Brosnan & Sun,
2004; Du & Sun, 2004). RedeGreeneBlue (RGB) colour
vision systems find widespread use in food quality
control for the detection of surface defects and grading
operations (Chao, Chen, Early, & Park, 1999; Daley,
Carey, & Thompson, 1993; Throop, Aneshansley, & Up-
church, 1993). However, conventional colour cameras are
poor identifiers of surface features sensitive to wavebands
other than RGB, such as low but potentially harmful con-
centrations of animal faeces on foods (Liu, Chen, Kim,
Chan, & Lefcourt, 2007; Park, Lawrence, Windham, &
Smith, 2006). To overcome this, multispectral imaging sys-
tems have been developed to combine images acquired at
a number (usually 3e4) of narrow wavebands, sensitive to
features of interest on the object. Compared with conven-
tional analytical methods such as HPLC, multispectral imag-
ing systems can perform non-destructive analyses in
a fraction of the time required (Malik, Poonacha, Moses, &
Lodder, 2001).

Hyperspectral imaging
Hyperspectral imaging, known also as chemical or spec-

troscopic imaging, is an emerging technique that integrates
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conventional imaging and spectroscopy to attain both spa-
tial and spectral information from an object. It was origi-
nally developed for remote sensing applications (Goetz,
Vane, Solomon, & Rock, 1985) but has since found appli-
cation in such diverse fields as astronomy (Hege, O’Con-
nell, Johnson, Basty, & Dereniak, 2003; Wood, Gulian,
Fritz, & Van Vechten, 2002), agriculture (Monteiro, Mine-
kawa, Kosugi, Akazawa, & Oda, 2007; Smail,
Fritz, & Wetzel, 2006; Uno et al., 2005), pharmaceuticals
(Lyon et al., 2002; Rodionova et al., 2005; Roggo, Edmond,
Chalus, & Ulmschneider, 2005) and medicine (Ferris et al.,
2001; Kellicut et al., 2004; Zheng, Chen, Intes, Chance, &
Glickson, 2004). Some advantages of hyperspectral imag-
ing over conventional RGB, NIR and multispectral imaging
are outlined in Table 1.

The US Food and Drug Administration (FDA) led process
analytical technology (PAT) initiative aims to understand
and control the manufacturing process by monitoring
critical performance attributes (http://www.fda.gov). The
non-destructive, rugged and flexible nature of HSI makes
it an attractive PAT for identification of critical control
parameters that impact on finished product quality (Lewis,
Schoppelrei, Lee, & Kidder, 2005). It is expected that HSI
will be increasingly adopted as a PAT for the food industry,
as has already been the case in manufacturing environments
such as the pharmaceutical industry (Koehler, Lee, Kidder,
& Lewis, 2002).

Hyperspectral image acquisition
Hyperspectral images are made up of hundreds of con-

tiguous wavebands for each spatial position of a target
studied. Consequently, each pixel in a hyperspectral image
contains the spectrum of that specific position. The result-
ing spectrum acts like a fingerprint which can be used to
characterise the composition of that particular pixel. Hy-
perspectral images, known as hypercubes (Lu & Chen,
1998), are three-dimensional blocks of data, comprising
two spatial and one wavelength dimension, as illustrated
in Fig. 1. The hypercube allows for the visualization of
biochemical constituents of a sample, separated into par-
ticular areas of the image, since regions of a sample
with similar spectral properties have similar chemical
composition.

It is currently unfeasible to obtain information in all
three-dimensions of a hypercube simultaneously; one is

Table 1. Comparison of RGB imaging, NIR spectroscopy (NIRS),
multispectral imaging (MSI) and hyperspectral imaging (HSI)

Feature RGB
imaging

NIRS MSI HSI

Spatial information U U U

Spectral information U Limited U

Multi-constituent information Limited U Limited U

Sensitivity to minor components Limited U
limited to obtaining two dimensions at a time, then cre-
ating a three-dimensional image by stacking the two-
dimensional ‘slices’ in sequence. There are two conven-
tional ways to construct a hypercube. One method,
known as the ‘‘staring imager’’ configuration involves
keeping the image field of view fixed, and obtaining images
one wavelength after another. Hypercubes obtained using
this configuration thus consist of a three-dimensional stack
of images (one image for each wavelength examined), stored
in what is known as the Band Sequential (BSQ) format.
Wavelength in the ‘‘staring imager’’ configuration is
typically moderated using a tuneable filter; Acousto-optic
Tuneable Filters (AOTFs) and Liquid Crystal Tuneable Fil-
ters (LCTFs) are the two most predominantly employed.
AOTFs have been used in the construction of commercially
available NIR-CI systems (Lewis et al., 2005); the main ad-
vantages of AOTFs are good transmission efficiency, fast
scan times and large spectral range. On the other hand,
LCTFs show greater promise for filtering of Raman images,
due to superior spectral bandpass and image quality (Pappas,
Smith, & Winefordner, 2000). ‘‘Staring imager’’ instruments
incorporating tuneable filters have found a number of appli-
cations in pharmaceutical quality control (Roggo et al., 2005;
Zuzak, Schaeberle, Gladwin, Cannon, & Levin, 2001); their
lack of moving parts represents an advantage in many
situations.

Another configuration involves acquisition of simulta-
neous spectral measurements from a series of adjacent spa-
tial positions e this requires relative movement between
the object and the detector in what is known as ‘‘push-
broom’’ acquisition (Lawrence, Park, Windham, & Mao,
2003). Some instruments produce hyperspectral images
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Fig. 1. Schematic representation of hyperspectral imaging hypercube
showing the relationship between spectral and spatial dimensions.
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based on a point step and acquire mode: spectra are ob-
tained at single points on a sample, then the sample is
moved and another spectrum taken. Hypercubes obtained
using this configuration are stored in what is known as
the Band Interleaved by Pixel (BIP) format. Advances in
detector technology have reduced the time required to ac-
quire hypercubes. Line mapping instruments record the
spectrum of each pixel in a line of sample which is simul-
taneously recorded by an array detector; the resultant hy-
percube is stored in the Band Interleaved by Line (BIL)
format. This method is particularly well suited to conveyor
belt systems, and may therefore be more practicable than
the former for food industry applications.

Components of a hyperspectral imaging system
Pushbroom hyperspectral imaging systems typically

contain the following components: objective lens, spectro-
graph, camera, acquisition system, translation stage, illumi-
nation and computer, as shown in Fig. 2. The camera,
spectrograph and illumination conditions determine the
spectral range of the system: ViseNIR systems typically
range between 400 and 1000 nm, and utilize cameras
with Charge Coupled Device (CCD) or Complementary
Metal Oxide Semiconductor (CMOS) sensors; longer
wavelength systems require more expensive IR focal-plane
array detectors with appropriate spectrograph which oper-
ates in the IR region. The sample/target is usually diffusely
illuminated by a tungstenehalogen or LED source. A line
of light reflected from the sample enters the objective
lens and is separated into its component wavelengths by
diffraction optics contained in the spectrograph; a two-
dimensional image (spatial dimension�wavelength di-
mension) is then formed on the camera and saved on the
computer. The sample is moved past the objective lens
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Fig. 2. Components of a hyperspectral imaging system.
on a motorized stage and the process repeated; two-
dimensional line images acquired at adjacent points on the
object are stacked to form a three-dimensional hypercube
which may be stored on a PC for further analysis.

Analysis of hyperspectral images
Numerous techniques exist to analyse hyperspectral

data, all of which aim to reduce the dimensionality of the
data while retaining important spectral information with
the power to classify important areas of a scene. Typical
steps followed in analysing hyperspectral images are out-
lined in Fig. 3 and described below.

Reflectance calibration
This is carried out to account for the background spec-

tral response of the instrument and the ‘dark’ camera
response. For reflectance measurements, the background
is obtained by collecting a hypercube from a uniform,
high reflectance standard or white ceramic; the dark
response is acquired by turning off the light source,
completely covering the lens with its cap and recording
the camera response. The corrected reflectance value (R)
is calculated as follows:

R¼ ðsample� darkÞ=ðbackground� darkÞ:

Fig. 3. Schematic diagram of hyperspectral data analysis process.
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Pre-processing
Pre-processing is usually performed to remove non-

chemical biases from the spectral information (e.g., scatter-
ing effects due to surface inhomogeneities) and prepare the
data for further processing. A number of spectral pre-
processing techniques exist, including polynomial baseline
correction, SavitzkyeGolay derivative conversion, mean-
centering and unit variance normalisation. Other operations
usually carried out at the pre-processing stage include
thresholding and masking to remove redundant background
information from the hypercube.

Classification
Hypercube classification enables the identification of re-

gions with similar spectral characteristics. Due to the large
size of hypercubes (which can exceed 50 MB, depending
on image resolution, spectral resolution and pixel binning)
complex multivariate analytical tools, such as principal
component analysis (PCA), partial least squares (PLS), lin-
ear discriminant analysis (LDA), Fishers discriminant anal-
ysis (FDA), multi-linear regression (MLR) and artificial
neural networks (ANN), are usually employed for classifi-
cation. Table 2 presents a summary of classification algo-
rithms utilised in 30 papers dealing with hyperspectral
images of foods published since 2004 (if more than one
method of analysis was used in a paper, the best performing
method is shown). PLS classification was the most popular
classification method, being employed in over 25% of
cases.

Conventional chemometric methods such as PCA and
PLS may not be suitable for analysing hyperspectral images,
since these techniques were developed for analysing single
spectra (Noh & Lu, 2007; Shah, Watanachaturaporn, Varshney,
& Arora, 2003). To overcome this, a number of methods
have been proposed: Noh and Lu (2007) applied a hybrid
approach, employing both PCA and ANN to relate hyper-
spectral fluorescence of apple to its colour and firmness
(R> 0.75); another research group (Cheng et al., 2004) de-
veloped a hybrid PCAeFDA method for identification of
chill damaged cucumbers, which outperformed PCA and
FDA methods when used separately for classification.
The Spectral Angle Mapper (SAM) algorithm is
Table 2. Summary of measurement mode, product type, wavelength region studied and classification algorithm employed in papers published
on hyperspectral imaging of food since 2004

Mode Product Wavelength
region (nm)

Classification Author, year

Reflectance Apple 447e951 Band ratio (BR) Liu et al., 2007
430e900 Band difference (BD) Mehl et al., 2004
954e1350 Partial least squares (PLS) Nicola€ı et al., 2006
500e950 Principal components analysis (PCA) Xing et al., 2005
500e950 PCA Xing, Saeys, & De Baerdemaeker, 2007
500e950 PCA Xing et al., 2007

Corn 950e1700 PLS Weinstock, Janni, Hagen, & Wright, 2006
Cucumber 900e1700 BR Ariana et al., 2006

447e951 Integrated PCAeFDA Cheng et al., 2004
447e951 BR Liu et al., 2005

Citrus fruit 400e970 PLS Menesatti, Urbani, & Lanza, 2005
Pasta 400e1700 PLS Menesatti D’Andrea, & Bucarelli, 2004
Peach 500e1000 Multi-linear regression (MLR) Lu & Peng, 2006
Pork 430e1000 Artificial neural network (ANN) Qiao et al., 2007
Potato 430e1000 ANN Qiao, Wang, Ngadi, & Baljinder, 2005
Poultry 430e850 PLS Lawrence, Windham, Park, Heitschmidt, & Smith, 2006

430e850 BR Park et al., 2006
430e850 Decision tree Windham et al., 2005
430e850 Spectral angle mapper Park et al., 2007

Strawberry 400e1000 MLR El Masry et al., 2007
650e1000 LDA Tallada, Nagata, & Kobayashi, 2006
650e1000 Band difference Nagata, Tallada, Kobayashi, 2006

Fluorescence Apple 500e1040 Hybrid PC-ANN Noh & Lu, 2007
Cantaloupe 425e774 PCA Vargas et al., 2005
Poultry 425e710 Fuzzy algorithm Kim et al., 2004
Walnut 425e775 Support vector machine Jiang et al., 2007

Transmittance Cherries 450e1000 ANN Qin & Lu, 2005
Codfish 350e950 PLS Heia et al., 2007
Cucumbers 450e950 Image thresholding Ariana & Lu, 2006
Maize 750e1090 PLS Cogdill et al., 2004
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a supervised classification method which uses an n-dimen-
sional angle for matching pixels to reference spectra. This
method determines spectral similarity by calculating the
angle between the spectra (treating them as vectors in
a space with dimensionality equal to the number of wave-
bands), and has been used for classifying faecal and ingesta
contaminants on the surface of broiler carcasses (Park,
Windham, Lawrence, & Smith, 2007). Support vector
machine classifiers belong to the group of machine learning
algorithms that use optimization tools, which work to
identify the optimal hyperplane as a decision surface to
discriminate between classes of interest. A Gaussian-kernel
based support vector machine approach has been used to
classify walnut shell and pulp, and it was reported that
this method performed better for classification than PCA
and FDA (Jiang, Zhu, Rao, Berney, & Tao, 2007).

Image processing
Image processing is carried out to convert the contrast

developed by the classification step into a picture depicting
component distribution. Greyscale or colour mapping with
intensity scaling is commonly used to display composi-
tional contrast between pixels in an image. Image fusion,
in which two or more images at different wavebands are
combined to form a new image (Pohl, 1998) is frequently
implemented to provide even greater contrast between dis-
tinct regions of a sample. Images may be combined using
algorithms based on straightforward mathematical opera-
tors, e.g., addition, subtraction, multiplication and division.
One example is the band ratio method, in which an image at
one waveband is divided by that at another wavelength (Liu
et al., 2007; Park et al., 2006).

Applications of hyperspectral imaging to food quality
and safety

Hyperspectral imaging is a powerful tool for the identi-
fication of key wavebands in the development of online au-
tomated multispectral imaging systems. Consequently, it
finds widespread use in research for the development of
multispectral inspection tools. Hyperspectral imaging, like
other spectroscopy techniques, can be carried out in reflec-
tance, transmission or fluorescence modes. While the ma-
jority of published research on hyperspectral imaging has
been performed in reflectance mode, transmission and
emission modes have also been investigated: the following
contains descriptions of the recent advances in the applica-
tion of hyperspectral imaging in each of these modes for
food quality analysis.

Hyperspectral reflectance imaging
Reflectance is the most common mode of hyperspectral

imaging, with 22 out of 30 research papers published since
2004 performed in reflectance mode (Table 2). Hyperspec-
tral reflectance imaging is usually carried out in the
ViseNIR (400e1000 nm) or NIR (1000e1700 nm) range,
and has been used to detect defects, contaminants and qual-
ity attributes of fruits, vegetables and meat products, as
described below.

One research team (Nicola€ı, Lötze, Peirs, Scheerlinck, &
Theron, 2006) developed an NIR hyperspectral reflectance
system with a spectral range of 900e1700 nm to detect the
bitter pit defect in apples. The system was capable of iden-
tifying bitter pit lesions invisible to the naked eye, but re-
duced luminosity at the image boundary caused some
misclassification errors. Ariana et al. (2006) investigated
the application of NIR hyperspectral reflectance imaging
in the same spectral region for the detection of bruises on
pickling cucumbers. Reflectance for bruised cucumber tis-
sue was generally lower than that for normal tissue, and de-
tection accuracy was dependent on the time after bruising.
It was demonstrated that band ratio and difference algo-
rithms were better than PCA for classification of bruised
cucumbers.

Light scattering from a surface is highly dependent on
the product density and cell structures, so it follows that
scattering profiles may indicate related properties, such as
texture. Indeed, the relationship between hyperspectral
scattering profiles (in the 500e1000 nm spectral range)
and texture has been explored to predict peach firmness
(Lu & Peng, 2006). In this investigation, a Lorentzian dis-
tribution function was fitted to scattering data, and Lorent-
zian model parameters at each wavelength were used to
build an empirical regression model to predict peach firm-
ness (R> 0.58).

A ViseNIR (400e1000 nm) hyperspectral reflectance
imaging system was developed to identify bruises on ap-
ples (Xing, Bravo, Jancsók, Ramon, & De Baerdemaeker,
2005). Using PCA, four wavebands were selected to build
a multispectral testing system; PCA was then applied to
the multispectral images, and it was shown that the 2nd
and 3rd principal components could identify bruises
with 86% accuracy. Xing, Saeys, and De Baerdemaeker
(2006) also developed a multispectral imaging system to
discriminate between bruises and the stem-end/calyx on
apples, a well known problem in apple sorting technology.
Polder, Heijden, and Young (2002) showed that a hyper-
spectral reflectance imaging system in the spectral region
of 396e736 nm was more effective than RGB imaging for
discriminating ripeness level in tomatoes, regardless of il-
lumination condition tested. El Masry, Wang, El Sayed,
and Ngadi (2007) used a ViseNIR hyperspectral imaging
system region for non-destructive determination of straw-
berry quality. Optimal wavelengths were obtained from
PLS, and multi-linear regression was then used to predict
moisture content, total soluble solids content and pH
(R> 0.8). A similar system was used to evaluate pork
quality and marbling level (Qiao, Ngadi, Wang, Gariépy,
& Prasher, 2007), employing a feed-forward neural net-
work to classify samples, with up to 85% classification
accuracy.
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Gómez-Sanchis et al. (2004) demonstrated the potential
of using a ViseNIR hyperspectral imaging system for the
detection of infections caused by Penicillium digitatum in
citrus fruits before they became apparent to human inspec-
tors. PCA was employed to reduce the number of detection
wavebands, and classification and regression trees were ap-
plied which correctly classified 80% of image pixels. Park
et al. (2006) investigated the performance of a ViseNIR
hyperspectral reflectance imaging system for poultry sur-
face faecal contaminant detection. The system allowed
for the selection of optimum bandwidths for the construc-
tion of a multispectral imaging system based on dual
band ratio algorithm to identify ingesta and faeces on poul-
try carcasses with 96.4% accuracy.

The research group of Kim, Chen, and Mehl (2001) de-
veloped a laboratory-based hyperspectral imaging system
with a spectral range of 430e930 nm to conduct food qual-
ity and safety research, primarily for the development of
multispectral imaging systems for food process control,
through detection of optimal bands and algorithm develop-
ment. This system was recently used to conduct hyperspec-
tral reflectance imaging experiments for the detection of
apple surface defects/contamination (Kim et al., 2002;
Liu et al., 2007; Mehl, Chen, Kim, & Chan, 2004) and
identification of chilling damage on cucumber (Cheng
et al., 2004; Liu, Chen, Wang, Chan, & Kim, 2005). Both
Kim et al. (2002) and Liu et al. (2007) have stated that hy-
perspectral reflectance imaging was unable to detect thin
layers of faeces on apples, and suggested that use of fluo-
rescence hyperspectral imaging would improve detection
rates, noting, however, the relatively high cost of laser
excitation sources.

Hyperspectral fluorescence imaging
Fluorescence spectroscopy is well established as an

analytical technique for food control, especially in the
dairy industry (Christensen, Povlsen, & Sørensen, 2003;
Karoui & De Baerdemaeker, 2007; Strasburg & Lude,
1995). The chlorophyll chromophore is particularly im-
portant for the fluorescence of plant products, and plants
excited by UV light generally emit in the visibleenear
infrared region (Chappelle, McMurtrey, & Kim, 1991).
Hyperspectral fluorescence imaging is emerging as
a tool for food quality investigation: 4 out of 30 papers
published on hyperspectral imaging applied to food since
2004 have investigated hyperspectral fluorescence imaging
(Table 2).

Kim, Kim, Chen, and Kong (2004) designed a hyper-
spectral fluorescence system to detect skin tumours on
chicken carcasses. UV-A (365 nm) lamps were used to il-
luminate samples on a moving stage and hyperspectral
images were obtained by acquiring adjacent line scans,
as described previously. A multispectral imaging system
was developed by the same research group to detect faecal
contamination on apples, based on optimal wavelengths
identified by a hyperspectral fluorescence imaging system
(Kim et al., 2002). This research team also used hyper-
spectral fluorescence images to develop a multispectral
system for detection of faecal contamination on pork
and apple, using a 355 nm Nd:Yag laser for excitation
(Kim, Lefcourt, & Chen, 2003). Regions of contamination
not readily visible to the human eye were easily identified
from the multispectral fluorescence images obtained. Var-
gas, Kim, Tao, and Lefcourt (2005) investigated hyper-
spectral fluorescence imaging for the detection of faecal
contamination on cantaloupes, employing PCA to identify
dominant wavelengths for the development of a multispec-
tral detection system.

Noh and Lu (2007) examined the relationship between
fluorescence hyperspectral line images and apple quality,
using a blue-laser diode to produce chlorophyll fluores-
cence: a hyperspectral line scan located 1.5 mm from
the beam centre was analysed using a hybrid PCAe
ANN method. No significant differences were observed
from fluorescence data obtained after 1, 2, 3, 4 and
5 min of continuous laser illumination; therefore, fluores-
cence measurements could be performed within 1 min of
illumination. Spectral features were correlated to apple
quality characteristics such as firmness and colour with
a correlation coefficient of 0.74 or greater after 1 min il-
lumination. It was noted that the relatively low correla-
tion coefficients obtained in the study could be
improved by using multiple line scans rather than single
line scans.

Hyperspectral transmission imaging
Only 4 out of 30 papers published on hyperspectral

imaging of food since 2004 have dealt with hyperspectral
imaging in the transmission mode (Table 2). Transmission
hyperspectral imaging is potentially applicable for the
online estimation of internal constituent concentrations
and detection of internal defects within foods (Schmilo-
vitch et al., 2004). Qin and Lu (2005) applied hyperspec-
tral transmission imaging to detect pits in tart cherries.
Light was transmitted through individual cherries from
a light source placed below the sample holder, and re-
corded by an imaging spectrograph placed above the sam-
ple. Transmission images for four different sample
orientations were tested, and it was shown that sample ori-
entation and colour did not significantly affect classifica-
tion accuracy. This is significant for high throughput
operations, where it is difficult to keep sample orientation
uniform. Cogdill, Hurburgh, and Rippke (2004) investi-
gated the application of NIR hyperspectral transmission
imaging for estimation of oil and moisture content in
corn kernels. Stationary samples were illuminated from be-
low via collimating optics through a sample presentation
stage: a tuneable filter within the spectrograph removed
the need for sample movement. Although this method
was capable of predicting moisture content with high
accuracy, it was unable to measure oil concentration
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accurately. Another research team (Heia et al., 2007) de-
veloped a detection method for parasites on codfish, by
applying PLS regression to transmission hyperspectral im-
ages. This method enabled non-destructive identification
of parasites 2e3 mm deeper than could be detected by
manual inspection of fillets.

Transmission hyperspectral images may equally be ob-
tained from moving samples. Ariana and Lu (2006) em-
ployed such an approach to investigate internal damage in
cucumbers. Cucumbers were mounted on a rotating stage,
illuminated from below and hyperspectral transmission
line scans were captured from above. Three hyperspectral
line scans were obtained for each cucumber, separated by
120�. An image thresholding method resulted in higher
classification accuracies than PLS analysis, achieving over-
all classification accuracy up to 94.3%.

Hyperspectral imaging for bacterial identification
Recently, a number of researchers have reported the

potential of HSI for identification of microorganisms of
concern in food. Dubois, Lewis, Fry, and Calvey (2005)
demonstrated the potential application of NIR hyperspec-
tral imaging as a high throughput technique for the differ-
entiation of bacteria based on their NIR spectra. NIR
images of food specific cards containing both test and cal-
ibration bacteria samples were obtained in the spectral re-
gion 1200e2350 nm using an InSb focal-plane array
detector. Some bacteria were identifiable from spectral
differences observed at unique wavelengths; however, in
situations where particular microorganisms of concern
were sought, PLS classification was preferable to separate
the genera of bacteria present. The suitability of Raman
hyperspectral imaging for the enumeration of waterborne
pathogens has also been evaluated (Escoriza, VanBriesen,
Stewart, Maier, & Treado, 2006). Hyperspectral images in
the range 3200e3700 nm were obtained from inoculated
water samples using a Raman Chemical Imaging micro-
scope containing a liquid crystal tuneable filter. It was
shown that Raman hyperspectral imaging can provide
quantitative information for bacterial concentration in wa-
ter samples. It was noted, however, that the Raman signal
was poor for low bacteria concentration (�1� 107 cells/
membrane), necessitating the use of filters on dilute water
samples prior to examination.

Limitations
HSI is a powerful platform technology for food process

monitoring. Currently, however, there are two major bar-
riers to its widespread adoption in the food industry.
The first is the high purchase cost of HSI systems: since
this technology is emerging as a tool for food quality
evaluation, there are few commercial suppliers. It is antic-
ipated that future technological developments in HSI sys-
tems for the pharmaceutical industry will promote the
manufacture of low cost systems suitable for food industry
applications. The second limiting factor arises from the
relatively lengthy times necessary for hypercube image ac-
quisition, processing and classification (Chen, Chao, &
Kim, 2002), depending on target size and image resolu-
tion, acquisition time can range from 2 to 4 min, while
processing and classification time are largely dependent
on computer hardware and software capabilities. However,
it can be expected that future developments in system
components, such as improved cameras, faster hardware,
more accurate and efficient algorithms, will shorten pro-
cessing and acquisition time, enabling real-time HSI qual-
ity monitoring systems.

Conclusions
Hyperspectral imaging (HSI) is an emerging tool for

food quality and safety analysis; the spatial feature of
HSI enables characterisation of complex heterogeneous
samples, while the spectral feature allows for the identifica-
tion of a wide range of multi-constituent surface and
sub-surface features. Due to the current high cost of HSI
systems, most food related HSI research has been geared
towards identification of important wavebands for the
development of low cost multispectral imaging systems.
However, judging by the continuing emphasis on process
analytical technologies to provide accurate, rapid, non-
destructive analysis of foodstuffs, it is likely that hyper-
spectral imaging will be increasingly adopted for safety
and quality control in the food industry, as has already
been the case in the pharmaceutical industry. Future devel-
opments in HSI equipment manufacture, such as lower pur-
chase costs and improvements in processing speed, will
encourage more widespread utilisation of this emerging
platform technology.
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Xing, J., Jancsók, P., & De Baerdemaeker, J. (2006). Stem-end/calyx
identification on apples using contour analysis in multispectral
images. Biosystems Engineering, 96(2), 231e237.

Xing, J., Saeys, W., & De Baerdemaeker, J. (2007). Combination
of chemometric tools and image processing for bruise
detection on apples. Computers and Electronics in Agriculture,
56(1), 1e13.

Zheng, G., Chen, Y., Intes, X., Chance, B., & Glickson, J. D. (2004).
Contrast-enhanced near-infrared (NIR) optical imaging for subsur-
face cancer detection. Journal of Porphyrins and Phthalocyanines,
8(9), 1106e1117.

Zuzak, K., Schaeberle, M., Gladwin, M., Cannon, R., &
Levin, I. (2001). Noninvasive determination of spatially
resolved and time-resolved tissue perfusion in humans during
nitric oxide inhibition and inhalation by use of a visible-
reflectance hyperspectral imaging technique. Circulation, 104,
2905.

http://www.asabe.org

	Hyperspectral imaging - an emerging process analytical tool for food quality and safety control
	Introduction
	Hyperspectral imaging
	Hyperspectral image acquisition
	Components of a hyperspectral imaging system
	Analysis of hyperspectral images
	Reflectance calibration
	Pre-processing
	Classification
	Image processing


	Applications of hyperspectral imaging to food quality and safety
	Hyperspectral reflectance imaging
	Hyperspectral fluorescence imaging
	Hyperspectral transmission imaging
	Hyperspectral imaging for bacterial identification

	Limitations
	Conclusions
	Acknowledgement
	References


