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Abstract. Classification of hyperspectral data is
challenging because of high dimensionality
inputs coupled with possible high dimensional
outputs and scarcity of labeled information.
Previously, a multiclassifier system was
formulated in a binary hierarchical framework to
group classes for accurate, rapid discrimination.
In order to improve performance for small
sample sizes, a new approach was developed that
utilizes a feature reduction scheme which
adaptively adjusts to the amount of labeled data
available, while exploiting the fact that certain
adjacent hyperspectral bands are highly
correlated. The resulting best-basis binary
hierarchical classifier (BB-BHC) family is thus
able to address the “small sample size” problem,
as evidenced by experimental results obtained
from analysis of AVIRIS and Hyperion data
acquired over Kennedy Space Center.

INTRODUCTION

The increasing availability of data from
hyperspectral sensors provides the capability to
characterize the spectral response of targets with
greater detail than multispectral sensors, and
thereby can potentially improve discrimination
between  targets. = However, the  high
dimensionality of the data is problematic for
supervised statistical classification techniques
that utilize the estimated covariance matrix since
the number of known samples is typically small
relative to the dimension of the data [1].
Previous research has dealt with this problem
using a) regularization methods to stabilize the
estimated covariance matrix directly or by using
the pseudo-inverse [2,3], b) transformation of the
input space via reduction in the dimension of the
feature space via feature extraction or selection
[4,5] or addition of artificially labeled data [6,7],
and c) utilization of ensembles of classifiers (e.g.
bagging, simple random sub-sampling, arcing)
[8,9]. When sample sizes are very small, these
approaches are  inadequate. = Regularized
covariance matrices often produce biased
estimates; the pseudo-inverse approach does not
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perform uniformly well over a range of sample
sizes; feature extraction methods suffer from
interpretability of results; and the performance of
ensembles of classifiers is greatly degraded when
sample sizes are extremely small. [10].

BEST-BASES BAYESIAN

HIERARCHICAL CLASSIFIER
A new approach has been developed
specifically to address the problem of extremely
small sample sizes. It is based on a Binary
Hierarchical Classifier (BHC) framework that
creates a multiclassifier system with C-1
classifiers arranged as a binary tree [11]. In the
top-down implementation, the root classifier tries
to optimally partition the original set of classes
into two disjoint meta-classes  while
simultaneously ~ determining  the  Fisher
discriminant that separates these two subsets.
The procedure is recursed, i.e., the meta-class
Q atnode n is partitioned into two meta-classes

n

(Q,,.9Q,,,,), until the original C classes are

obtained at the leaf nodes [12]. The tree
structure allows the more natural and easier
discriminations to be accomplished earlier [13].
The bottom-up version of the BHC utilizes an
agglomerative clustering algorithm whereby the
two most “similar” meta-classes are merged until
only one meta-class remains. Fisher’s
discriminant is again used as the distance
measure for determining the order in which the
classes are merged. Both algorithms perform
quite well for large dimensional input and output
problems if data samples are not extremely
small.

The new method extends the TD-BHC
and BU-BHC approaches through a best bases
feature extraction technique that exploits the
highly correlated bands observed within
hyperspectral data when it is advantageous. Jia
and Richards proposed a Segmented Principal
Components Transformation (SPCT) that also
exploits this characteristic [14]. However, SPCT
does not guarantee good discrimination
capability because the PCT transformation



criterion is related to variance, not discrimination
between classes. Further, the SPCT is based on
the correlation matrix over all classes, and thus
loses information from the class conditional
correlation matrices. Kumar et. al proposed
band combination techniques inspired by Best
Basis functions [15]. Adjacent bands were
selected for merging/splitting in a bottom-up/top
down approach using the product of a correlation
measure and a Fisher based discrimination
measure. Although the methods exploit band
ordering and yield excellent discrimination, they
are computationally expensive. Additionally, the
quality of the discrimination functions, and thus
the structure of the resulting feature space, is
affected by the amount of training data.

The new approach applies a best-basis
band-combining algorithm in conjunction with
the BHC framework, while tuning the amount of
feature reduction to the quantity of available
data. It also exploits the discovered hierarchy of
classes to regularize covariance estimates using
shrinkage. The method can be viewed as a
“best-basis” BHC that performs a band-
combining stage prior to the partitioning (TD
variant) or combining (BU variant) of meta-

classes. Band combination is performed on
highly correlated, spectrally adjacent bands.
Because the intraband correlation is class

specific, the band reduction algorithm must be
class dependent. In order to estimate the
“correlation” for a group of bands (meta-bands)

B =[p:q] over a set of classes Q, the

correlation measure Q (B) is defined as

. Sk
Q,.’ #=min min -/

LieQ p<i<j<q ,Slk SLk
ii ij

where Sf; is the (i, j)th element of the sample

Q0 (B)=min min

LieQ p<i<j<q

covariance matrix for class L, . The correlation

measure is used to determine which set of
adjacent meta-bands should be merged at
successive steps of the algorithm. Once the
number of group bands is small enough,
discrimination between classes in the reduced
space is maximized. When sample sizes are
small, the algorithm focuses on preserving as
many of the original bands as possible,
commensurate with the amount of training data

X

available. The minimum «_ <“—, this is a

user-defined input.

When constructing a basis specific to each
split in the BB-BHC, the quality of the
correlation measure depends on the quantity of
training data available to estimate the meta-class
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covariance matrices. This is particularly critical
for the “low branches” of the BB-BHC as the
meta-classes become smaller in cardinality, and
the amount of training data is strictly decreasing.

However, if the label specific S%  covariance
matrices are not suitable for inversion, failure to
stabilize their estimates before constructing the
basis passes the disadvantage of the small
sample size from the estimate of Fisher’s
disciminant and linear discriminant function to
the basis construction. The ancestor sample

covariance matrix SA™is defined as the sample
covariance matrix that is estimated from at least
.| X| observations and is most closely related

to L, based upon the BB-BHC structure. The

search for SA is performed uniquely for TD
and BU structures. In the TD framework, if

meta-class €2, is being considered for
partitioning, than §% = > P(Li)SL' is the first
candidate  for  SAnc. However, if
‘XQ ‘<(xmﬁ0D, then the BB-BHC tree structure

is climbed in search of a meta-class where

‘X o |20 . D . With the bottom-up framework,

ratio

if {Q,,,9Q,,,,} are being considered for

agglomeration, the first candidate for SA™ is
§Pooled P(an)SQZ" + P(QZnH )Ssz .

the BB-BHC is constructed bottom-up, the
structure cannot be climbed in search of a

suitable SA" . Therefore, if ‘XQ’m ‘<a D,

Because

ratio

then SAnc:iP(Li)SL" . (This estimate for
i=1

S4nre is used, even when the total quantity of

training data available is less than «_, D)

When applicable, the stabilized estimates of the

label specific covariance matrices are used to

estimate the correlation measure.

ratio

RESULTS

The wetlands of the Indian River Lagoon
system, located on the western coast of the
Kennedy Space Center (KSC) at Cape
Canaveral, Florida, are a critical habitat for
several species of waterfowl and aquatic life.
The test site for this research consists of a series
of impounded estuarine wetlands of the northern
Indian River Lagoon that reside on the western
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Figure 1. Classification (test set) accuracies for Cape Canaveral

shore of KSC. Classification of land cover for
this environment is difficult due to the similarity
of spectral signatures for certain vegetation
types. For classification purposes, 13 classes
representing the various land cover types that
occur in this environment have been defined and
samples of indicated size collected: 1) Scrub
(761); 2) Willow Swamp (243); 3) CP Hammock
(256); 4) CP/Oak Hammock (252); 5) Slash Pine
(161); 6) Oak/Broadleaf Hammock (229); 7)
Hardwood Swamp (105); 8) Graminoid Marsh
(420); 9) Spartina Marsh (520); 10) Cattail
Marsh (397); 11) Salt Marsh (419); Mud Flats
(447); Water (927).

The NASA AVIRIS sensor acquired data over
KSC on March 23, 1996. After removing water
absorption bands, D=176 bands of data remained
for classification. Multiple experiments were
performed using stratified sampling at
percentages of: 75, 50, 30, 15, 5, and 1.5. At
75% sampling, the amounts of training data for
classes 5, 6, and 7 are still less then D, as are
classes 2, 3, and 4 at 50%. Ten experiments,
using simple random sampling, were performed
at each percentage for the bottom-up and top-
down frameworks of the traditional TD-BHC,

1436

BU-BHC, the TD-P-BHC and BU-P-BHC using
the pseudo-inverse for tree construction and
feature extraction, and the adaptive TD-BB-
BHC, BU-BB-BHC best bases. Results are
shown in Figure 1.

Both best bases BHC methods yield
excellent results for sampling rates as low as
15%. Results are still acceptable for both the
best bases and pseudo-inversion methods at the
5% sampling rate, although the TD version of
the pseudo-inverse approach degrades more
rapidly than the BU method. At the lower
sampling percentages, the covariance matrices
are very poorly estimated in the full dimensional
space, yet test accuracies are still fairly high
using pseudo-inversion indicating that the
differences in class means is the main reason the
level of discrimination is being maintained. This
result is also reflected by the standard deviations
of the accuracies, which spike in the 15%-30%
sampling rate range for the pseudo-inverse
classifiers, where the covariance matrices are
still helping maintain a higher level of
classification although unstable. However, in
general, diminished classification accuracies of
the BB-BHC at the 1.5% sampling rate may be




due to a minimum requirement, the “intrinsic
dimensionality”, for the number of bands, after
which the results degrade sharply [16]. Overall,
results for KSC were consistent with those from
experiments at other sites, with the exception of
the results at the 1.5% sampling rate, where the
BB-BHC often yielded better results than the
pseudo-inverse.

CONCLUSIONS AND FUTURE WORK

A new best bases multi-classifier
framework that utilizes the flexibility gained by
transforming the output and input spaces
simultaneously has been developed to combat
the small sample size problem. By reducing the
size of the feature space in a directed manner,
dependent upon the quantity of training data
available in the binary hierarchy of meta-classes,
a high level of classification accuracy is
preserved even when faced with low quantities
of training data for some classes.

Combating the small sample size problem
with the dynamic best-basis algorithm helps
preserve the interpretability of the data, but using
Fisher’s linear discriminant function as the
feature extractor at each internal node of the
BHC diminishes this attractive characteristic.
While the discriminant function weights on each
band/group-band could be analyzed to determine
the respective band’s importance, the
interpretation and insight would be less
complicated if feature selection was performed
instead of feature extraction. Thus, use of
feature selection rather than feature extraction,
and the likely trade-off between classification
accuracy and retention of domain knowledge, is
being investigated further.  Additionally,
alternative  best bases approaches that
incorporate approximations to the spectrum and
an expanded feature space that includes
estimates of derivatives are being developed and

incorporated into this adaptive best bases
framework.

REFERENCES
1. D. Landgrebe, "Hyperspectral image data

analysis as a high dimensional signal processing
problem," (Invited), Special Issue of the [EEE
Signal Processing Magazine, 19(1), 17-28, 2002.
2. S. Tadjudin and D.A. Landgrebe, “Covariance
estimation with limited training samples,” /EEE
Trans. Geosci. Rem. Sens., 37(4), 2113-8, 1999.
3. M. Skurichina and R.P.W. Duin, “Stabilizing
classifiers for very small sample sizes”, Proc.
13th Int. Conf. on Pattern Recognition (Vienna,
Austria, Aug.25-29) Vol. 2, Track B: Pattern
Recognition and Signal Analysis, IEEE

1437

10.

11.

12.

13.

14.

15

16.

Computer Society Press, Los Alamitos, 891-6,
1996.

K. Fukunaga, Introduction to Statistical Pattern
Recognition, 2™ ed, Boston, 1990.

M.M. Crawford, S. Kumar, M.R. Ricard, J.C.
Gibeaut, and A.L. Neuenschwander, “Fusion of
Airborne Polarimetric and Interfermetric SAR
Data for Classification of Coastal Environments,”
IEEE Trans. on Geoscience and Remote Sensing,
37(4), 1306-1315, 1999.

Qiong Jackson and David Landgrebe, “An
adaptive classifier design for high-dimensional
data analysis with a limited training data set,”
IEEFE Trans. Geosci. Rem. Sens, 39(12), 2664-79,
2001.

B.M. Shahshahani and D.A. Landgrebe, “The
effect of unlabeled samples in reducing the small
sample size problem and mitigating the Hughes
phenomenon,” IEEE Trans. Geosci. Rem. Sens,,
32(5), 1087-95, 1994.

Marina Skurichina, “Stabilizing weak
classifiers,” Thesis, Vilnius State Univesity,
2001.

L. Breiman, “Bagging predictors,” Machine
Learning, 24(2), 123-40, 1996.

K. Tumer and J. Ghosh, "Error correlation and
error reduction in ensemble classifiers,"
Connection Science, Special Issue on Combining,
8(3/4), 385-404, 1996.

S. Kumar, J. Ghosh, and M.M. Crawford, “A
Hierarchical =~ Multiclassifier ~ System  for
Hyperspectral Data Analysis, Lecture Notes in
Computer Science, 1857:270-279, 2000.

S. Kumar, J. Ghosh and M. M. Crawford,
“Hierarchical fusion of multiple classifiers
for hyperspectral data analysis,” Pattern
Analysis and Applications, Special Issue on
Classifier Fusion (to appear).

P.A. Devijver and J. Kittler (editors), Pattern
Recognition Theory and Application. Springer-
Verlag, 1987.

X. Jia and J.A. Richards, “Segmented principal
components  transformation  for  efficient
hyperspectral remote-sensing image display and
classification,” IEEE Trans. Geosci. Rem. Sens.,
37(1), 538-42, 1999.

S. Kumar, J. Ghosh, and M.M. Crawford, “Best
basis  feature  exaction  algorithms  for
classification of hyperspectral data,” I[EEE Trans.
Geosci. Rem. Sens., 39(7), 1368-79, 2001.
Andrew Webb, Statistical pattern recognition.
London: Oxford University Press, 1999.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


