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Abstract.  Classification of hyperspectral data is 
challenging because of high dimensionality 
inputs coupled with possible high dimensional 
outputs and scarcity of labeled information.  
Previously, a multiclassifier system was 
formulated in a binary hierarchical framework to 
group classes for accurate, rapid discrimination. 
In order to improve performance for small 
sample sizes, a new approach was developed that 
utilizes a feature reduction scheme which 
adaptively adjusts to the amount of labeled data 
available, while exploiting the fact that certain 
adjacent hyperspectral bands are highly 
correlated. The resulting best-basis binary 
hierarchical classifier (BB-BHC) family is thus 
able to address the “small sample size” problem, 
as evidenced by experimental results obtained 
from analysis of AVIRIS and Hyperion data 
acquired over Kennedy Space Center. 
 

INTRODUCTION 
The increasing availability of data from 

hyperspectral sensors provides the capability to 
characterize the spectral response of targets with 
greater detail than multispectral sensors, and 
thereby can potentially improve discrimination 
between targets. However, the high 
dimensionality of the data is problematic for 
supervised statistical classification techniques 
that utilize the estimated covariance matrix since 
the number of known samples is typically small 
relative to the dimension of the data [1]. 
Previous research has dealt with this problem 
using a) regularization methods to stabilize the 
estimated covariance matrix directly or by using 
the pseudo-inverse [2,3], b) transformation of the 
input space via reduction in the dimension of the 
feature space via feature extraction or selection 
[4,5] or addition of artificially labeled data [6,7], 
and c) utilization of ensembles of classifiers (e.g. 
bagging, simple random sub-sampling, arcing) 
[8,9].  When sample sizes are very small, these 
approaches are inadequate. Regularized 
covariance matrices often produce biased 
estimates; the pseudo-inverse approach does not 

perform uniformly well over a range of sample 
sizes; feature extraction methods suffer from 
interpretability of results; and the performance of 
ensembles of classifiers is greatly degraded when 
sample sizes are extremely small. [10].   

 
BEST-BASES BAYESIAN 

HIERARCHICAL CLASSIFIER 
A new approach has been developed 

specifically to address the problem of extremely 
small sample sizes.  It is based on a Binary 
Hierarchical Classifier (BHC) framework that 
creates a multiclassifier system with C-1 
classifiers arranged as a binary tree [11]. In the 
top-down implementation, the root classifier tries 
to optimally partition the original set of classes 
into two disjoint meta-classes while 
simultaneously determining the Fisher 
discriminant that separates these two subsets.  
The procedure is recursed, i.e., the meta-class 

nΩ  at node n is partitioned into two meta-classes 

( )2 2 1,n n+Ω Ω , until the original C classes are 
obtained at the leaf nodes [12].  The tree 
structure allows the more natural and easier 
discriminations to be accomplished earlier [13].  
The bottom-up version of the BHC utilizes an 
agglomerative clustering algorithm whereby the 
two most “similar” meta-classes are merged until 
only one meta-class remains. Fisher’s 
discriminant is again used as the distance 
measure for determining the order in which the 
classes are merged.  Both algorithms perform 
quite well for large dimensional input and output 
problems if data samples are not extremely 
small. 

The new method extends the TD-BHC 
and BU-BHC approaches through a best bases 
feature extraction technique that exploits the 
highly correlated bands observed within 
hyperspectral data when it is advantageous.  Jia 
and Richards proposed a Segmented Principal 
Components Transformation (SPCT) that also 
exploits this characteristic [14].  However, SPCT 
does not guarantee good discrimination 
capability because the PCT transformation 
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criterion is related to variance, not discrimination 
between classes. Further, the SPCT is based on 
the correlation matrix over all classes, and thus 
loses information from the class conditional 
correlation matrices.  Kumar et. al proposed 
band combination techniques inspired by Best 
Basis functions [15].  Adjacent bands were 
selected for merging/splitting in a bottom-up/top 
down approach using the product of a correlation 
measure and a Fisher based discrimination 
measure.  Although the methods exploit band 
ordering and yield excellent discrimination, they 
are computationally expensive. Additionally, the 
quality of the discrimination functions, and thus 
the structure of the resulting feature space, is 
affected by the amount of training data.   

The new approach applies a best-basis 
band-combining algorithm in conjunction with 
the BHC framework, while tuning the amount of 
feature reduction to the quantity of available 
data. It also exploits the discovered hierarchy of 
classes to regularize covariance estimates using 
shrinkage. The method can be viewed as a  
“best-basis” BHC that performs a band-
combining stage prior to the partitioning (TD 
variant) or combining (BU variant) of meta-
classes.  Band combination is performed on 
highly correlated, spectrally adjacent bands. 
Because the intraband correlation is class 
specific, the band reduction algorithm must be 
class dependent.  In order to estimate the 
“correlation” for a group of bands (meta-bands) 

[ ]:p q=B  over a set of classes Ω , the 

correlation measure ( )Q B  is defined as 

( ) min min min min    
k

k

k kk k

L
i, jL

i, j L LL p i j q L p i j q
i,i i, j

S
S S

=  Q =  
∈Ω ≤ < ≤ ∈Ω ≤ < ≤

Q B , 

where kL
i, jS  is the (i, j)th element of the sample 

covariance matrix for class kL .  The correlation 

measure is used to determine which set of 
adjacent meta-bands should be merged at 
successive steps of the algorithm.  Once the 
number of group bands is small enough, 
discrimination between classes in the reduced 
space is maximized. When sample sizes are 
small, the algorithm focuses on preserving as 
many of the original bands as possible, 
commensurate with the amount of training data 

available.  The minimum  ratio D
α ≤

X
, this is a 

user-defined input.   
When constructing a basis specific to each 

split in the BB-BHC, the quality of the 
correlation measure depends on the quantity of 
training data available to estimate the meta-class 

covariance matrices.  This is particularly critical 
for the “low branches” of the BB-BHC as the 
meta-classes become smaller in cardinality, and 
the amount of training data is strictly decreasing.  
However, if the label specific kLS  covariance 
matrices are not suitable for inversion, failure to 
stabilize their estimates before constructing the 
basis passes the disadvantage of the small 
sample size from the estimate of Fisher’s 
disciminant and linear discriminant function to 
the basis construction.  The ancestor sample 
covariance matrix AncS is defined as the sample 
covariance matrix that is estimated from at least 

 ratioα X  observations and is most closely related 
to kL  based upon the BB-BHC structure.  The 

search for AncS  is performed uniquely for TD 
and BU structures.  In the TD framework, if 
meta-class kΩ  is being considered for 

partitioning, than ( )
i k

k i

L

L
iS P L S

∈Ω

Ω = ∑  is the first 

candidate for AncS .  However, if 

 ratiok
DΩ < αX , then the BB-BHC tree structure 

is climbed in search of a meta-class where 

ratiok
DΩ ≥ αX .  With the bottom-up framework, 

if { }2 2 1,n n+Ω Ω  are being considered for 

agglomeration, the first candidate for AncS  is 
( ) ( )2 2 1ooled

2 2 1
n nP

n nS P S P S +Ω Ω
+= Ω + Ω . Because 

the BB-BHC is constructed bottom-up, the 
structure cannot be climbed in search of a 
suitable AncS .  Therefore, if  ratioi j

DαΩ +Ω <X , 

then ( )
1

Anc C

i

iL
iP L SS

=

=∑ .  (This estimate for 

AncS  is used, even when the total quantity of 
training data available is less than  ratio Dα )  
When applicable, the stabilized estimates of the 
label specific covariance matrices are used to 
estimate the correlation measure.   

 
RESULTS 

The wetlands of the Indian River Lagoon 
system, located on the western coast of the 
Kennedy Space Center (KSC) at Cape 
Canaveral, Florida, are a critical habitat for 
several species of waterfowl and aquatic life.  
The test site for this research consists of a series 
of impounded estuarine wetlands of the northern 
Indian River Lagoon that reside on the western  
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shore of KSC.  Classification of land cover for 
this environment is difficult due to the similarity 
of spectral signatures for certain vegetation 
types.  For classification purposes, 13 classes 
representing the various land cover types that 
occur in this environment have been defined and 
samples of indicated size collected: 1) Scrub 
(761); 2) Willow Swamp (243); 3) CP Hammock 
(256); 4) CP/Oak Hammock (252); 5) Slash Pine 
(161); 6) Oak/Broadleaf Hammock (229); 7) 
Hardwood Swamp (105); 8) Graminoid Marsh 
(420); 9) Spartina Marsh (520); 10) Cattail 
Marsh (397); 11) Salt Marsh (419); Mud Flats 
(447); Water (927). 

The NASA AVIRIS sensor acquired data over 
KSC on March 23, 1996. After removing water 
absorption bands, D=176 bands of data remained 
for classification. Multiple experiments were 
performed using stratified sampling at 
percentages of:  75, 50, 30, 15, 5, and 1.5.  At 
75% sampling, the amounts of training data for 
classes 5, 6, and 7 are still less then D, as are 
classes 2, 3, and 4 at 50%. Ten experiments, 
using simple random sampling, were performed 
at each percentage for the bottom-up and top-
down frameworks of the traditional TD-BHC, 

BU-BHC, the TD-P-BHC and BU-P-BHC using 
the pseudo-inverse for tree construction and 
feature extraction, and the adaptive TD-BB-
BHC, BU-BB-BHC best bases.  Results are 
shown in Figure 1. 

Both best bases BHC methods yield 
excellent results for sampling rates as low as 
15%.  Results are still acceptable for both the 
best bases and pseudo-inversion methods at the 
5% sampling rate, although the TD version of 
the pseudo-inverse approach degrades more 
rapidly than the BU method. At the lower 
sampling percentages, the covariance matrices 
are very poorly estimated in the full dimensional 
space, yet test accuracies are still fairly high 
using pseudo-inversion indicating that the 
differences in class means is the main reason the 
level of discrimination is being maintained.  This 
result is also reflected by the standard deviations 
of the accuracies, which spike in the 15%-30% 
sampling rate range for the pseudo-inverse 
classifiers, where the covariance matrices are 
still helping maintain a higher level of 
classification although unstable. However, in 
general, diminished classification accuracies of 
the BB-BHC at the 1.5% sampling rate may be 

Figure 1.  Classification (test set) accuracies for Cape Canaveral 
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due to a minimum requirement, the “intrinsic 
dimensionality”, for the number of bands, after 
which the results degrade sharply [16]. Overall, 
results for KSC were consistent with those from 
experiments at other sites, with the exception of 
the results at the 1.5% sampling rate, where the 
BB-BHC often yielded better results than the 
pseudo-inverse. 

 
CONCLUSIONS AND FUTURE WORK 

A new best bases multi-classifier 
framework that utilizes the flexibility gained by 
transforming the output and input spaces 
simultaneously has been developed to combat 
the small sample size problem.  By reducing the 
size of the feature space in a directed manner, 
dependent upon the quantity of training data 
available in the binary hierarchy of meta-classes, 
a high level of classification accuracy is 
preserved even when faced with low quantities 
of training data for some classes. 

Combating the small sample size problem 
with the dynamic best-basis algorithm helps 
preserve the interpretability of the data, but using 
Fisher’s linear discriminant function as the 
feature extractor at each internal node of the 
BHC diminishes this attractive characteristic.  
While the discriminant function weights on each 
band/group-band could be analyzed to determine 
the respective band’s importance, the 
interpretation and insight would be less 
complicated if feature selection was performed 
instead of feature extraction.  Thus, use of 
feature selection rather than feature extraction, 
and the likely trade-off between classification 
accuracy and retention of domain knowledge, is 
being investigated further. Additionally, 
alternative best bases approaches that  
incorporate approximations to the spectrum and 
an expanded feature space that includes 
estimates of derivatives  are being developed and 
incorporated into this adaptive best bases 
framework. 
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